电机与控制学报
電機與控製學報
전궤여공제학보
ECTRIC MACHINES AND CONTROL
2009年
4期
576-580
,共5页
非线性模型%系统辨识%神经网络%内模控制%鲁棒性
非線性模型%繫統辨識%神經網絡%內模控製%魯棒性
비선성모형%계통변식%신경망락%내모공제%로봉성
nonlinear model%system identification%neural networks%internal control%robustness
针对良好非线性模型及其线性化补偿器模型难以建立的问题,结合神经网络的万能逼近性,提出一种模型辨识和内模控制方法.通过建立系统整体的目标函数,利用传统的BP学习算法,通过优化该目标函数得到良好非线性模型及其线性化补偿器,并给出在适当约束条件下的良好非线性模型及其线性化补偿器惟一性的证明.为提高系统鲁棒性,减小模型误差和外部扰动等不确定性,针对补偿后的伪线性系统设计非线性内模控制系统.仿真结果表明,通过优化该目标函数可以得到精确的的辨识模型和线性化补偿器,能有效地对良好非线性模型实现线性化;对补偿后的伪线性系统设计的内模控制器具有较强的鲁棒性,控制系统能精确地跟踪参考信号.
針對良好非線性模型及其線性化補償器模型難以建立的問題,結閤神經網絡的萬能逼近性,提齣一種模型辨識和內模控製方法.通過建立繫統整體的目標函數,利用傳統的BP學習算法,通過優化該目標函數得到良好非線性模型及其線性化補償器,併給齣在適噹約束條件下的良好非線性模型及其線性化補償器惟一性的證明.為提高繫統魯棒性,減小模型誤差和外部擾動等不確定性,針對補償後的偽線性繫統設計非線性內模控製繫統.倣真結果錶明,通過優化該目標函數可以得到精確的的辨識模型和線性化補償器,能有效地對良好非線性模型實現線性化;對補償後的偽線性繫統設計的內模控製器具有較彊的魯棒性,控製繫統能精確地跟蹤參攷信號.
침대량호비선성모형급기선성화보상기모형난이건립적문제,결합신경망락적만능핍근성,제출일충모형변식화내모공제방법.통과건립계통정체적목표함수,이용전통적BP학습산법,통과우화해목표함수득도량호비선성모형급기선성화보상기,병급출재괄당약속조건하적량호비선성모형급기선성화보상기유일성적증명.위제고계통로봉성,감소모형오차화외부우동등불학정성,침대보상후적위선성계통설계비선성내모공제계통.방진결과표명,통과우화해목표함수가이득도정학적적변식모형화선성화보상기,능유효지대량호비선성모형실현선성화;대보상후적위선성계통설계적내모공제기구유교강적로봉성,공제계통능정학지근종삼고신호.
A novel model identification and internal control method are proposed with the universal approxomation of neural networks to solve the hardness of establish of nice nonlinear model and its linearizing compensator. The system objective function is founded and optimized to capture the nicely nonlinear model and its linearizing compensator, utilizing traditional Back-Propagation algorithm, whose uniqueness is approved under some proper conditions. To improve the systerm robustness and reduce the uncertainty including model error and external disturbance,a nonlinear internal control system is designed on the compensated pseudo-linear system.The results show that the identified model and linearizing compensator are precise by optimizing the system objective function and the nicely nonlinear model can be linearized well. The internal controller designed on the compensated pseudo-linear system has good ability in robustness and the control system can track the reference signal accurately.