光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2010年
5期
1275-1278
,共4页
刘宝%苏荣国%宋志杰%张芳%王修林
劉寶%囌榮國%宋誌傑%張芳%王脩林
류보%소영국%송지걸%장방%왕수림
浮游植物%识别%小波分析%三维荧光光谱
浮遊植物%識彆%小波分析%三維熒光光譜
부유식물%식별%소파분석%삼유형광광보
Phytoplankton%Identification%Wavelet analysis%3D fluorescence speatra
小波分析技术是提取不同门类以及种属水平上浮游植物的三维荧光光谱特征的有效手段,利用coif2小波函数对分属于7个门,30个属的37种我国近海常见的浮游植物的三维荧光光谱进行小波分解,小波分量和尺度分量作为浮游植物备选荧光特征谱,通过Bayes分析确定第3层尺度分量作为浮游植物门类特征光谱,第3层尺度分量和第2和第3层小波分量的组合作为浮游植物属特征谱.对获得的浮游植物荧光特征谱进行系统聚类分析,得到37种浮游植物门类水平上的107条和属水平上的155条浮游植物荧光标准谱,组成浮游植物荧光标准谱库.在此标准谱库的基础上,利用非负最小二乘法解析的多元线性回归建立浮游植物三维荧光光谱识别技术.该技术对1 776个单种藻样品和384个混合藻样品进行识别分析,单种浮游植物样品在门类水平上的识别正确率为98.1%,属水平上的识别正确率为97.0%;浮游植物混合样品中的优势种在门水平上的识别正确率分别为94.8%,在属水平上的识别正确率为92.7%.
小波分析技術是提取不同門類以及種屬水平上浮遊植物的三維熒光光譜特徵的有效手段,利用coif2小波函數對分屬于7箇門,30箇屬的37種我國近海常見的浮遊植物的三維熒光光譜進行小波分解,小波分量和呎度分量作為浮遊植物備選熒光特徵譜,通過Bayes分析確定第3層呎度分量作為浮遊植物門類特徵光譜,第3層呎度分量和第2和第3層小波分量的組閤作為浮遊植物屬特徵譜.對穫得的浮遊植物熒光特徵譜進行繫統聚類分析,得到37種浮遊植物門類水平上的107條和屬水平上的155條浮遊植物熒光標準譜,組成浮遊植物熒光標準譜庫.在此標準譜庫的基礎上,利用非負最小二乘法解析的多元線性迴歸建立浮遊植物三維熒光光譜識彆技術.該技術對1 776箇單種藻樣品和384箇混閤藻樣品進行識彆分析,單種浮遊植物樣品在門類水平上的識彆正確率為98.1%,屬水平上的識彆正確率為97.0%;浮遊植物混閤樣品中的優勢種在門水平上的識彆正確率分彆為94.8%,在屬水平上的識彆正確率為92.7%.
소파분석기술시제취불동문류이급충속수평상부유식물적삼유형광광보특정적유효수단,이용coif2소파함수대분속우7개문,30개속적37충아국근해상견적부유식물적삼유형광광보진행소파분해,소파분량화척도분량작위부유식물비선형광특정보,통과Bayes분석학정제3층척도분량작위부유식물문류특정광보,제3층척도분량화제2화제3층소파분량적조합작위부유식물속특정보.대획득적부유식물형광특정보진행계통취류분석,득도37충부유식물문류수평상적107조화속수평상적155조부유식물형광표준보,조성부유식물형광표준보고.재차표준보고적기출상,이용비부최소이승법해석적다원선성회귀건립부유식물삼유형광광보식별기술.해기술대1 776개단충조양품화384개혼합조양품진행식별분석,단충부유식물양품재문류수평상적식별정학솔위98.1%,속수평상적식별정학솔위97.0%;부유식물혼합양품중적우세충재문수평상적식별정학솔분별위94.8%,재속수평상적식별정학솔위92.7%.
In the present paper,the authors utilize the wavelet base function eoiflet2 (coil2) to analyze the 3D fluorescence spectra of 37 phytoplankton species belonging to 30 genera of 7 divisions,and these phytoplankton species include common species frequently causing harmful algal blooms and most predominant algal species in the inshore area of China Sea.After the Rayleigh and Raman scattering peaks were removed by the Delaunay triangulation interpolation,the fluorescence spectra of those phytoplankton species were transformed with the coiflet2 wavelet,and the scale vectors and the wavelet vectors were candidate for the feature spectra.Based on the testing results by Bayesian analysis,the 3rd scale vectors were the best feature segments at the division level and picked out as the fluorescence division feature spectra of those phytoplankton species,and the group of the 3rd scale vectors,the 2nd and 3rd wavelet vectors were the best feature segments at the genus level and chosen as the fluorescent genus feature spectra of those phytoplankton species.The reference spectra of those phytoplankton species at the division level and that at the genus level were obtained from these feature spectra by cluster analysis,respectively.The reference spectra base for 37 phytoplankton species was composed of 107 reference spectra at the division level and 155 ones at the genus level Based on this reference spectra base,a fluorometric discriminating method for phytoplankton populations was established by multiple linear regression resolved by the nonnegative least squares.For 1 776 samples of single phytoplankton species,a correct discriminating rate of 97.0% at genus level and 98.1% at division level can be obtained;The correct discriminating rates are more than 92.7% at the genus level and more than 94.8% at the division level for 384 mixed samples from two phytoplankton species.