数学的实践与认识
數學的實踐與認識
수학적실천여인식
MATHEMATICS IN PRACTICE AND THEORY
2009年
22期
79-90
,共12页
捕食者-被捕者模型%Beverton-Holt差分方程%化学计量学%吸引性%稳定性%分支
捕食者-被捕者模型%Beverton-Holt差分方程%化學計量學%吸引性%穩定性%分支
포식자-피포자모형%Beverton-Holt차분방정%화학계량학%흡인성%은정성%분지
predator-prey model%Beverton-Holt equation%Stoichiometry%stability%bifurcation
大部分捕食者-被捕者模型是连续的,但是生物的发展未必是连续的,而且环境变化对生物的作用普遍存在时滞性.根据连续系统考虑的捕食者和被捕者的相互作用、Beverton-Holt差分方程以及化学计量学因素对系统的影响,建立了离散的捕食者-被捕者模型.分析表明:新建立的模型,基本上保留了连续系统的基本特征,揭示了能量富足的矛盾.进一步通过对全局的吸引集的构造,对模型的动力学行为有深刻的认识,还指出了生物灭绝和濒临灭绝的差别,这表明新模型比连续系统和直接利用连续解的离散方法得到的离散模型包含更多的生物意义.
大部分捕食者-被捕者模型是連續的,但是生物的髮展未必是連續的,而且環境變化對生物的作用普遍存在時滯性.根據連續繫統攷慮的捕食者和被捕者的相互作用、Beverton-Holt差分方程以及化學計量學因素對繫統的影響,建立瞭離散的捕食者-被捕者模型.分析錶明:新建立的模型,基本上保留瞭連續繫統的基本特徵,揭示瞭能量富足的矛盾.進一步通過對全跼的吸引集的構造,對模型的動力學行為有深刻的認識,還指齣瞭生物滅絕和瀕臨滅絕的差彆,這錶明新模型比連續繫統和直接利用連續解的離散方法得到的離散模型包含更多的生物意義.
대부분포식자-피포자모형시련속적,단시생물적발전미필시련속적,이차배경변화대생물적작용보편존재시체성.근거련속계통고필적포식자화피포자적상호작용、Beverton-Holt차분방정이급화학계량학인소대계통적영향,건립료리산적포식자-피포자모형.분석표명:신건립적모형,기본상보류료련속계통적기본특정,게시료능량부족적모순.진일보통과대전국적흡인집적구조,대모형적동역학행위유심각적인식,환지출료생물멸절화빈림멸절적차별,저표명신모형비련속계통화직접이용련속해적리산방법득도적리산모형포함경다적생물의의.
Most of predator-prey systems are continuous; but the growth of organisms is not necessarily continuous and the effect of the environmental change is not instantaneous, either. Having considered the interaction between the predator and the prey in continuous system, Beverton-Holt equation and the influence of the stoichiometric factor to the system, we construct predator-prey model. The analysis shows that they retain most of the fundamental features of the continuous model and also reveal the paradox of energy; Also analytical and numerical analyses of the model provide more insight into system dynamics including a set of global attraction, meanwhile we notes the fine distinctions between the two states of organisms--facing to die out and having died out, which indicate that it contains more biologic phenomena than continuous model and discrete one deduced from continuous one by using the continuous solution discretely.