红外与毫米波学报
紅外與毫米波學報
홍외여호미파학보
JOURNAL OF INFRARED AND MILLIMETER WAVES
1999年
5期
343-350
,共8页
视频序列分割%递归高阶统计%形态滤波
視頻序列分割%遞歸高階統計%形態濾波
시빈서렬분할%체귀고계통계%형태려파
video sequence segmentation%recursive higher-order statistics%morphology filtering
本文提出一种固定背景下的运动目标自动分割技术.首先,提出了一种新的运动变化检测方案.然后利用递归高阶统计的方法从高斯噪声中提取运动变化.同传统的高阶统计方法相比,递归高阶统计由于利用前n帧的图像信息,所以能够更有效地抑制噪声,检测小目标,并且分割效果较好.
本文提齣一種固定揹景下的運動目標自動分割技術.首先,提齣瞭一種新的運動變化檢測方案.然後利用遞歸高階統計的方法從高斯譟聲中提取運動變化.同傳統的高階統計方法相比,遞歸高階統計由于利用前n幀的圖像信息,所以能夠更有效地抑製譟聲,檢測小目標,併且分割效果較好.
본문제출일충고정배경하적운동목표자동분할기술.수선,제출료일충신적운동변화검측방안.연후이용체귀고계통계적방법종고사조성중제취운동변화.동전통적고계통계방법상비,체귀고계통계유우이용전n정적도상신식,소이능구경유효지억제조성,검측소목표,병차분할효과교호.
A moving object detection method in video sequence was proposed, which is considered a fixed camera model. Firstly, a new method was presented for detection of changes of motion. After the change detection, the recursive higher-order mothod was used to extract the change from the Gaussian noise. Compared with the classical higher-order statistics method, the recursive higher-order statistics method uses the former n images information, so it can obtain better estimates of HOS to reduce the effect of additive noise and detect the small object and perform well on segmetation.