光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2010年
1期
214-219
,共6页
石媛媛%邓劲松%陈利苏%张东彦%丁晓东%王珂
石媛媛%鄧勁鬆%陳利囌%張東彥%丁曉東%王珂
석원원%산경송%진리소%장동언%정효동%왕가
扫描%光谱分割%钾胁迫%信息提取
掃描%光譜分割%鉀脅迫%信息提取
소묘%광보분할%갑협박%신식제취
Scanning%Spectral segmentation%Potassium stress%Information extraction
实时、便捷、可靠的作物营养诊断和临测方法是科学施肥的基础.传统手段在取样、测定、数据分析方面需耗费大量的人力、物力,且时效性差.通过静态扣描技术采集不同钾营养水平的水稻叶片图像,利用面向对象的光谱分割技术和最近邻分类器,根据扣描图像中目标埘象的光谱、窄间、形状等特征对钾胁迫叶片特征进行了准确的提取和识别,并从分类结果里初步判断出斑点区域面积比例随钾浓度的增大而减小,用叶片图像进行缺钾叶片量化诊断时,第三完全展开叶优于第一完全展开叶.随机选取250个点利用误差分析矩阵方法进行精度评价,总体识别精度为96.00%,KAPPA系数为0.945 3.这一叶片特征提取方法为水稻钾胁迫量化诊断提供了新的方法.
實時、便捷、可靠的作物營養診斷和臨測方法是科學施肥的基礎.傳統手段在取樣、測定、數據分析方麵需耗費大量的人力、物力,且時效性差.通過靜態釦描技術採集不同鉀營養水平的水稻葉片圖像,利用麵嚮對象的光譜分割技術和最近鄰分類器,根據釦描圖像中目標塒象的光譜、窄間、形狀等特徵對鉀脅迫葉片特徵進行瞭準確的提取和識彆,併從分類結果裏初步判斷齣斑點區域麵積比例隨鉀濃度的增大而減小,用葉片圖像進行缺鉀葉片量化診斷時,第三完全展開葉優于第一完全展開葉.隨機選取250箇點利用誤差分析矩陣方法進行精度評價,總體識彆精度為96.00%,KAPPA繫數為0.945 3.這一葉片特徵提取方法為水稻鉀脅迫量化診斷提供瞭新的方法.
실시、편첩、가고적작물영양진단화림측방법시과학시비적기출.전통수단재취양、측정、수거분석방면수모비대량적인력、물력,차시효성차.통과정태구묘기술채집불동갑영양수평적수도협편도상,이용면향대상적광보분할기술화최근린분류기,근거구묘도상중목표시상적광보、착간、형상등특정대갑협박협편특정진행료준학적제취화식별,병종분류결과리초보판단출반점구역면적비례수갑농도적증대이감소,용협편도상진행결갑협편양화진단시,제삼완전전개협우우제일완전전개협.수궤선취250개점이용오차분석구진방법진행정도평개,총체식별정도위96.00%,KAPPA계수위0.945 3.저일협편특정제취방법위수도갑협박양화진단제공료신적방법.
The timing, convenient and reliable method of diagnosing and monitoring crop nutrition is the foundation of scientific fertilization management However, this expectation cannot be fulfilled by traditional methods, which always need excessively work on sampling, detection and analysis and even exhibit lagging timing. In the present study, stable images for potassium-stressed leaf were acquired using stationary scanning, and object-oriented segmentation technique was adopted to produce image objects. Afterwards, nearest neighbor classifier integrated the spectral, shape and topologic information of image objects to precisely identify characteristics of potassium-stressed features. Diagnosing with image, the 3rd expanded leaves are superior to the 1st expanded leaves. In order to assess the result, 250 random samples and an error matrix were applied to undertake the accuracy assessment of identification. The results showed that the overall accuracy and kappa coefficient was 96. 00% and 0. 945 3 respectively. The study offered an information extraction method for quantitative diagnosis of rice under potassium stress.