中华放射学杂志
中華放射學雜誌
중화방사학잡지
Chinese Journal of Radiology
2008年
10期
1101-1105
,共5页
周智洋%单鸿%Steffen Ringgaard%邹学农%邹立津%李海声%李晓娟%Hans StΦdkilde-JΦrgensen%Cody Büinger
週智洋%單鴻%Steffen Ringgaard%鄒學農%鄒立津%李海聲%李曉娟%Hans StΦdkilde-JΦrgensen%Cody Büinger
주지양%단홍%Steffen Ringgaard%추학농%추립진%리해성%리효연%Hans StΦdkilde-JΦrgensen%Cody Büinger
自旋锁定成像%磁共振成像%体模,显像术%软骨,关节%猪
自鏇鎖定成像%磁共振成像%體模,顯像術%軟骨,關節%豬
자선쇄정성상%자공진성상%체모,현상술%연골,관절%저
Spin-lock imaging%Magnetic resonance imaging%Phantom,imaging%Cartilage,articular%Porcine
目的 建立MR关节软骨自旋锁定旋转坐标系中的自旋-晶格弛豫时间(T1ρ)三维成像技术和量化分析方法.方法 用7.0 T MR机和内径为6 cm的圆柱形鸟笼23Na-H射频线罔,采用自旋锁定自动补偿脉冲簇和三维自旋回波序列,自旋锁定时间(spin-locking time,TSL)分别为0、10、20、30、40和50 ms,自旋锁定频率带宽为440 Hz(自旋锁定磁场BsL),对6个不同浓度(1%~6%)琼脂糖凝胶体模和8个猪髌骨分别进行自旋锁定T1ρ成像扫描,建立自旋锁定T1ρ成像技术并评价其重复性.在Vnmr J图像终端上,利用自行编制的软件进行三维重组自旋锁定T1ρWI,并重构T1ρ弛豫时间图;采用人工标注的方法画感兴趣区,分别测定体模与髌骨软骨T1ρWI的信噪比(SNR)与T1ρ值.T1ρ值在各组间的对比,行单因素方差分析;软骨组织与琼脂糖体模SNR随时间对比关系的假设检验,行多因素方差分析.结果 关节软骨T1ρWI的SNR值、短自旋锁定时间采集图像的SNR值明显高于长自旋锁定时间采集的图像.在不同自旋锁定时间髌骨软骨T1ρWI,SNR值在48 4±8~95±8之间;不同自旋锁定时间,正常软骨SNR与1%琼脂糖体模的对比关系不同,当自旋锁定时间<30 ms时,琼脂糖体模的图像SNR均低于正常软骨;>30 ms时,正常软骨的图像SNR均低于1%的琼脂糖体模.随着琼脂糖浓度减少,不同自旋锁定时间采集的图像SNR值逐渐增加.各浓度琼脂糖凝胶体模T1ρ值测量的变异系数均小于10%,显示重复性好.髌骨关节软骨全层、表层、中间层、深层、钙化层T1ρ值测定结果分别为(68.9±6.3)、(80.7±12.8)、(65.7±7.0)、(82.4±7.7)、(69.7±6.4)ms(F=6.436,P<0.05).T1ρ值在软骨表层和深层明显高于中间层、钙化层和软骨全层.结论 三维自旋锁定T1ρ成像技术是可行的、敏感的、特异的软骨分子成像技术,T1ρ弛豫时间图可量化测量关节软骨的分层状结构.
目的 建立MR關節軟骨自鏇鎖定鏇轉坐標繫中的自鏇-晶格弛豫時間(T1ρ)三維成像技術和量化分析方法.方法 用7.0 T MR機和內徑為6 cm的圓柱形鳥籠23Na-H射頻線罔,採用自鏇鎖定自動補償脈遲簇和三維自鏇迴波序列,自鏇鎖定時間(spin-locking time,TSL)分彆為0、10、20、30、40和50 ms,自鏇鎖定頻率帶寬為440 Hz(自鏇鎖定磁場BsL),對6箇不同濃度(1%~6%)瓊脂糖凝膠體模和8箇豬髕骨分彆進行自鏇鎖定T1ρ成像掃描,建立自鏇鎖定T1ρ成像技術併評價其重複性.在Vnmr J圖像終耑上,利用自行編製的軟件進行三維重組自鏇鎖定T1ρWI,併重構T1ρ弛豫時間圖;採用人工標註的方法畫感興趣區,分彆測定體模與髕骨軟骨T1ρWI的信譟比(SNR)與T1ρ值.T1ρ值在各組間的對比,行單因素方差分析;軟骨組織與瓊脂糖體模SNR隨時間對比關繫的假設檢驗,行多因素方差分析.結果 關節軟骨T1ρWI的SNR值、短自鏇鎖定時間採集圖像的SNR值明顯高于長自鏇鎖定時間採集的圖像.在不同自鏇鎖定時間髕骨軟骨T1ρWI,SNR值在48 4±8~95±8之間;不同自鏇鎖定時間,正常軟骨SNR與1%瓊脂糖體模的對比關繫不同,噹自鏇鎖定時間<30 ms時,瓊脂糖體模的圖像SNR均低于正常軟骨;>30 ms時,正常軟骨的圖像SNR均低于1%的瓊脂糖體模.隨著瓊脂糖濃度減少,不同自鏇鎖定時間採集的圖像SNR值逐漸增加.各濃度瓊脂糖凝膠體模T1ρ值測量的變異繫數均小于10%,顯示重複性好.髕骨關節軟骨全層、錶層、中間層、深層、鈣化層T1ρ值測定結果分彆為(68.9±6.3)、(80.7±12.8)、(65.7±7.0)、(82.4±7.7)、(69.7±6.4)ms(F=6.436,P<0.05).T1ρ值在軟骨錶層和深層明顯高于中間層、鈣化層和軟骨全層.結論 三維自鏇鎖定T1ρ成像技術是可行的、敏感的、特異的軟骨分子成像技術,T1ρ弛豫時間圖可量化測量關節軟骨的分層狀結構.
목적 건립MR관절연골자선쇄정선전좌표계중적자선-정격이예시간(T1ρ)삼유성상기술화양화분석방법.방법 용7.0 T MR궤화내경위6 cm적원주형조롱23Na-H사빈선망,채용자선쇄정자동보상맥충족화삼유자선회파서렬,자선쇄정시간(spin-locking time,TSL)분별위0、10、20、30、40화50 ms,자선쇄정빈솔대관위440 Hz(자선쇄정자장BsL),대6개불동농도(1%~6%)경지당응효체모화8개저빈골분별진행자선쇄정T1ρ성상소묘,건립자선쇄정T1ρ성상기술병평개기중복성.재Vnmr J도상종단상,이용자행편제적연건진행삼유중조자선쇄정T1ρWI,병중구T1ρ이예시간도;채용인공표주적방법화감흥취구,분별측정체모여빈골연골T1ρWI적신조비(SNR)여T1ρ치.T1ρ치재각조간적대비,행단인소방차분석;연골조직여경지당체모SNR수시간대비관계적가설검험,행다인소방차분석.결과 관절연골T1ρWI적SNR치、단자선쇄정시간채집도상적SNR치명현고우장자선쇄정시간채집적도상.재불동자선쇄정시간빈골연골T1ρWI,SNR치재48 4±8~95±8지간;불동자선쇄정시간,정상연골SNR여1%경지당체모적대비관계불동,당자선쇄정시간<30 ms시,경지당체모적도상SNR균저우정상연골;>30 ms시,정상연골적도상SNR균저우1%적경지당체모.수착경지당농도감소,불동자선쇄정시간채집적도상SNR치축점증가.각농도경지당응효체모T1ρ치측량적변이계수균소우10%,현시중복성호.빈골관절연골전층、표층、중간층、심층、개화층T1ρ치측정결과분별위(68.9±6.3)、(80.7±12.8)、(65.7±7.0)、(82.4±7.7)、(69.7±6.4)ms(F=6.436,P<0.05).T1ρ치재연골표층화심층명현고우중간층、개화층화연골전층.결론 삼유자선쇄정T1ρ성상기술시가행적、민감적、특이적연골분자성상기술,T1ρ이예시간도가양화측량관절연골적분층상결구.
Objectlve To demonstrate the feasibility of three-dimensional(3D)spin-lattice relaxation time in the rotating frame(T1ρ)-weighted imaging of porcine patellar cartilage in vitro at 7.0 T and the measurement of T1ρ of agarose phantom and patellar cartilage.Methods All the MR Imaging experiments were performed on a 7.0 T Varian scanner using a 6.0-cm-diameter quadrature birdcage RF coil tuned to 300 MHz.A 3D spin-echo sequence with a self.compensating spin-lock pulse cluster was used to acquire 3D-T1ρ-weighted images.The time of spin-locking(TSL)was from 0 to 50 ms with an interval of 10 ms.Spin-lock power wag 440 Hz.3D-T1ρweighted imaging was done three times for 6 phantoms (concentration 1%t0 6%),as well as once for 8 porcine patellar cartilages in order to assess the reproducibility of this technique.Signal-to-noise ratio(SNR)was measured on the acquired images of both phantoms and patellar cartilages,which were tested for significance using Two-way ANOVA.The images were processed on Vnmr J workstation using home-built processing software to construct 3 D T1ρ maps.T1ρ values were calculated within manually drawn regions-of-interest(ROI),and differences between groups were tested for significance using analysis of variance(One-way ANOVA).Results T1ρ -weighted images with a shorter TSL had a higher SNR value,which measured between 48±8 and 95±8 in the global cartilage.Cartilage images had a higher SNR(TSL<30 ms)compared to agarose phantoms and a lower SNR(TSL >30 ms)only compared to l%agarose phantorm T1ρ relaxation times in agarose phantoms increased as agarose concentrations decreased in global regions.The CV of T1ρ in agarose phantoms was less than 10%.Global and regional analyses of patellar cartilage T1ρ were 68.9±6.3 ms,80.7±12.8 ms,65.7±7.0 ms,82.4±7.7 ms,and 69.7±6.4 ms in the global cartilage,the superficial layer,the transitional layer,the deep layer,and the calcified layer,respectively.T1ρ in the superficial and deep layer was significantly higher than in the transitional,calcified layer and global cartilage(F=6.436,P<0.05).Conclusions The present study demonstrates the feasibihty of 3D-T1ρ-weighted imaging of porcine patellar cartilage at 7.0 T with hish image quality.T1ρ maps can be used to quantify the laminar structures in 3D-T1ρ-weighted images of articular cartilage,which pave the way to evaluate early osteoarthritis and cartilage regeneration.