应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2010年
3期
653-659
,共7页
行波解%时滞偏微分方程%扰动方法%Fredholm理论
行波解%時滯偏微分方程%擾動方法%Fredholm理論
행파해%시체편미분방정%우동방법%Fredholm이론
Traveling wavefronts%Partial differential delay equations%Perturbation method%Fredholm theory
本文利用扰动法、Fredholm理论及经典的不动点定理,研究了时滞偏微分方程行波解的存在性.我们的结果表明,对于没有时滞时任意有意义的波速,在小时滞扰动下行波解具有持久性.
本文利用擾動法、Fredholm理論及經典的不動點定理,研究瞭時滯偏微分方程行波解的存在性.我們的結果錶明,對于沒有時滯時任意有意義的波速,在小時滯擾動下行波解具有持久性.
본문이용우동법、Fredholm이론급경전적불동점정리,연구료시체편미분방정행파해적존재성.아문적결과표명,대우몰유시체시임의유의의적파속,재소시체우동하행파해구유지구성.
In this paper we investigate the existence of traveling fronts for a partial differential equation with time delay by applying perturbation method, Fredholm theory and fixed-point theorem. We show that for any wave speed in the nondelay problem, the traveling front persists under the introduction of delay.