光学精密工程
光學精密工程
광학정밀공정
OPTICS AND PRECISION ENGINEERING
2010年
3期
662-669
,共8页
张玲瑄%贾振元%任小涛%郑新毅
張玲瑄%賈振元%任小濤%鄭新毅
장령선%가진원%임소도%정신의
微细电火花加工%放电状态检测%模糊逻辑%逐级映射检测
微細電火花加工%放電狀態檢測%模糊邏輯%逐級映射檢測
미세전화화가공%방전상태검측%모호라집%축급영사검측
micro Electrical Discharge Machining(EDM)%discharge state detection%fuzzy logic%successive mapping detection
为解决微细电火花加工过程中由于频繁出现的放电信号严重畸变、放电状态不稳定甚至突变等造成的放电状态难于准确检测的技术难点,在分析和研究传统的微细电火花加工放电状态检测方法的基础上,结合系统辨识和模糊逻辑理论,提出了微细电火花加工放电状态逐级映射检测原理和方法.对实时采集到的极间电压和电流信号,通过模糊运算判别采样点的放电状态,再将采样点放电状态值映射为放电状态矢量,并对该矢量进行统计得到"短路率"和"火花/电弧率",经过模糊推理辨识出各分析周期的放电状态.实验表明,该检测方法准确性高、运算量低且运算速度快,与平均电压法相比,效率提高22.2%.检测结果可为微细电火花放电加工过程的实时控制提供系统放电状态的反馈输入,保证了加工控制系统的稳定性和准确性.
為解決微細電火花加工過程中由于頻繁齣現的放電信號嚴重畸變、放電狀態不穩定甚至突變等造成的放電狀態難于準確檢測的技術難點,在分析和研究傳統的微細電火花加工放電狀態檢測方法的基礎上,結閤繫統辨識和模糊邏輯理論,提齣瞭微細電火花加工放電狀態逐級映射檢測原理和方法.對實時採集到的極間電壓和電流信號,通過模糊運算判彆採樣點的放電狀態,再將採樣點放電狀態值映射為放電狀態矢量,併對該矢量進行統計得到"短路率"和"火花/電弧率",經過模糊推理辨識齣各分析週期的放電狀態.實驗錶明,該檢測方法準確性高、運算量低且運算速度快,與平均電壓法相比,效率提高22.2%.檢測結果可為微細電火花放電加工過程的實時控製提供繫統放電狀態的反饋輸入,保證瞭加工控製繫統的穩定性和準確性.
위해결미세전화화가공과정중유우빈번출현적방전신호엄중기변、방전상태불은정심지돌변등조성적방전상태난우준학검측적기술난점,재분석화연구전통적미세전화화가공방전상태검측방법적기출상,결합계통변식화모호라집이론,제출료미세전화화가공방전상태축급영사검측원리화방법.대실시채집도적겁간전압화전류신호,통과모호운산판별채양점적방전상태,재장채양점방전상태치영사위방전상태시량,병대해시량진행통계득도"단로솔"화"화화/전호솔",경과모호추리변식출각분석주기적방전상태.실험표명,해검측방법준학성고、운산량저차운산속도쾌,여평균전압법상비,효솔제고22.2%.검측결과가위미세전화화방전가공과정적실시공제제공계통방전상태적반궤수입,보증료가공공제계통적은정성화준학성.
To measure precisely the discharge state and overcome the shortcomings of the distortion of discharge signals and the instability of discharge state,the principle and method of successive mapping detection were proposed combined with the system identification and fuzzy control after analysis on traditional discharge state detection methods in micro Electrical Discharge Machining(EDM). For real-time collected gap voltage and current signals in the process,the fuzzy operation was used to identify the discharge state of a sampling point and then to map the sampling point discharge state value into sampling point discharge state vector. Furthermore,the vector was counted to obtain the"Short rate" and "spark/arc rate" and the fuzzy reasoning was used to identify the discharge state of each cycle. Test results show that the presented detection method has highly accuracy and is able to identify data and operate fast.Compared with that of the average voltage detection method, the efficiency has been increased by 22.2%. Detection results can provide feed back inputs of the system discharge states for the real-time control of the discharge process, which ensures the stability and accuracy of the processing control system.