中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2012年
1期
84-92
,共9页
王刚%范学鑫%付立军%纪锋%马海鑫
王剛%範學鑫%付立軍%紀鋒%馬海鑫
왕강%범학흠%부립군%기봉%마해흠
非线性电力电子系统%小干扰稳定性%周期轨%Poincare映射
非線性電力電子繫統%小榦擾穩定性%週期軌%Poincare映射
비선성전력전자계통%소간우은정성%주기궤%Poincare영사
nonlinear power electronic systems%small signal stability%periodic orbit%Poincare mapping
拓扑结构切换、占空比控制方法和非线性元件均可使电力电子系统具有非线性特性,因此其小干扰稳定问题属于微分方程周期轨的稳定问题。由于状态空间平均法误差较大、难以预测分叉,而数值仿真法物理概念不清晰,因此,提出了基于梯形积分法的非线性电力电子系统周期轨稳定性分析方法。利用梯形积分法描述系统占空比方程和每阶段的非线性状态方程,由隐函数求导法和链式求导法计算周期轨Poincar6映射的雅可比(Jacobiarl)矩阵,提出了系统稳定裕度指标,建立了基于周期轨Poincar6映射的非线性电力电子系统小干扰稳定性分析方法。该方法能够克服小干扰稳定传统分析方法的困难,揭示非线性电力电子系统失稳的动力系统机制。仿真分析验证了算法的有效性。
拓撲結構切換、佔空比控製方法和非線性元件均可使電力電子繫統具有非線性特性,因此其小榦擾穩定問題屬于微分方程週期軌的穩定問題。由于狀態空間平均法誤差較大、難以預測分扠,而數值倣真法物理概唸不清晰,因此,提齣瞭基于梯形積分法的非線性電力電子繫統週期軌穩定性分析方法。利用梯形積分法描述繫統佔空比方程和每階段的非線性狀態方程,由隱函數求導法和鏈式求導法計算週期軌Poincar6映射的雅可比(Jacobiarl)矩陣,提齣瞭繫統穩定裕度指標,建立瞭基于週期軌Poincar6映射的非線性電力電子繫統小榦擾穩定性分析方法。該方法能夠剋服小榦擾穩定傳統分析方法的睏難,揭示非線性電力電子繫統失穩的動力繫統機製。倣真分析驗證瞭算法的有效性。
탁복결구절환、점공비공제방법화비선성원건균가사전력전자계통구유비선성특성,인차기소간우은정문제속우미분방정주기궤적은정문제。유우상태공간평균법오차교대、난이예측분차,이수치방진법물리개념불청석,인차,제출료기우제형적분법적비선성전력전자계통주기궤은정성분석방법。이용제형적분법묘술계통점공비방정화매계단적비선성상태방정,유은함수구도법화련식구도법계산주기궤Poincar6영사적아가비(Jacobiarl)구진,제출료계통은정유도지표,건립료기우주기궤Poincar6영사적비선성전력전자계통소간우은정성분석방법。해방법능구극복소간우은정전통분석방법적곤난,게시비선성전력전자계통실은적동력계통궤제。방진분석험증료산법적유효성。
Topological structure switching, duty ratio control method and nonlinear components can all make power electronics systems have nonlinear characteristics, so small signal stability of nonlinear power electronic systems belongs to stability of periodic orbit of differential equations. State space averaging method has difficulty to predict bifurcation or the prediction has lower accuracy, while numerical integration method has not clear physical concept, so this paper presents an analysis method of periodic orbit stability based on trapezoidal integration method. Trapezoidal integration method was applied to describe the duty ratio equation and nonlinear state space equation of each stage. Jacobian matrix of the Poincare mapping was calculated by implicit function derivative method and chain derivative method, and the stability margin was presented. Thus the analysis method of small signal stability for nonlinear power electronic systems was established based on Poincare mapping of periodic orbit. The presented method can overcome the difficulty of traditional analysis method of small signal stability and reveal the instability mechanism of dynamical system for nonlinear power electronic systems. Simulation analysis verified the validity of the algorithm.