湖南工业大学学报
湖南工業大學學報
호남공업대학학보
JOURNAL OF HUNAN UNIVERSITY OF TECHNOLOGY
2011年
6期
18-24
,共7页
螺型位错%非完整界面%压电磁弹性介质%位错力
螺型位錯%非完整界麵%壓電磁彈性介質%位錯力
라형위착%비완정계면%압전자탄성개질%위착력
screw dislocations%imperfect interface%magnetoelectroelastic solids%image force
考虑无穷远反平面力载荷和平面内电磁载荷情况下,横观各向同性的压电磁介质中广义螺型位错与含非完整界面的圆形夹杂的电磁弹性耦合效应。广义螺型位错位于基体的任意一点处并且在其位错核上作用有点力、点电荷和线电流。通过运用复变函数方法,得到了电磁弹性场的解析解。借助于广义的Peach-Koehler公式,求解出了广义螺型位错上位错力的精确表达式。研究了非完整界面对夹杂区域中电磁弹性场的影响。讨论了各种参数(非完整界面,材料匹配性和位错位置)对作用在非完整界面附近广义螺型位错上位错力的影响规律。这些基本解可以作为分析压电磁介质中相应裂纹问题的格林函数。
攷慮無窮遠反平麵力載荷和平麵內電磁載荷情況下,橫觀各嚮同性的壓電磁介質中廣義螺型位錯與含非完整界麵的圓形夾雜的電磁彈性耦閤效應。廣義螺型位錯位于基體的任意一點處併且在其位錯覈上作用有點力、點電荷和線電流。通過運用複變函數方法,得到瞭電磁彈性場的解析解。藉助于廣義的Peach-Koehler公式,求解齣瞭廣義螺型位錯上位錯力的精確錶達式。研究瞭非完整界麵對夾雜區域中電磁彈性場的影響。討論瞭各種參數(非完整界麵,材料匹配性和位錯位置)對作用在非完整界麵附近廣義螺型位錯上位錯力的影響規律。這些基本解可以作為分析壓電磁介質中相應裂紋問題的格林函數。
고필무궁원반평면력재하화평면내전자재하정황하,횡관각향동성적압전자개질중엄의라형위착여함비완정계면적원형협잡적전자탄성우합효응。엄의라형위착위우기체적임의일점처병차재기위착핵상작용유점력、점전하화선전류。통과운용복변함수방법,득도료전자탄성장적해석해。차조우엄의적Peach-Koehler공식,구해출료엄의라형위착상위착력적정학표체식。연구료비완정계면대협잡구역중전자탄성장적영향。토론료각충삼수(비완정계면,재료필배성화위착위치)대작용재비완정계면부근엄의라형위착상위착력적영향규률。저사기본해가이작위분석압전자개질중상응렬문문제적격림함수。
Under remote anti-plane shear stresses and in-plane magnetoelectric loads, the magnetoelectroelastic coupling interaction between a generalized screw dislocation and a circular inhomogeneity with an imperfect interface in transversely isotropic magnetoelectroelastic solids is investigated. The generalized screw dislocation may be at any point of the inhomogeneity and is subjected to a point force, a point charge and a line electric current at the core. By means of a complex-variable method, the analytic solutions of magnetoelectroelastic fields are obtained. With the aid of the generalized Peach-Koehler formula, the explicit expressions of image forces exerted on the piezoelectric screw dislocations are derived. The influence of the interface imperfection on the magnetoelectroelastic fields inside the inhomogeneity is studied. The image force acting on the generalized screw dislocation near the imperfect interface is also discussed for variable parameters (interface imperfection, material magnetoelectroelastic mismatch and dislocation position). These basic solutions can be used as Green' s functions for the analysis of the corresponding crack problem in magnetoelectroelastic solids.