合成化学
閤成化學
합성화학
CHINESE JOURNAL OF SYNTHETIC CHEMISTRY
2004年
z1期
84-84
,共1页
OLEds%spirobifluorene%pyrimidine%oligofluorene%charge mobility
Advances made in the molecular design of modern optoelectronic materials have made significant contributions toward the development of organic electronics. The organic light-emitting devices (OLEDs) employing monodisperse or polymeric conjugated materials possess the most promising prospects. However, materials suitable for long-term use as blue light emitters are still far from optimization in terms of stability.In the past few years, interesting materials based on 9,9-diaryl-substituted fluorene as a core structure have been developed in our laboratory. We developed a series of efficient and morphologically stable pyrimidine-containing 9,9'-spirobifluorene-cored oligoaryls as pure blue emitters. The steric hindrance inherent with the molecular structure renders the material with a record-high thin-film PL quantum yield of ~95% and a glass transition temperature (Tg) of ~200 ℃.Blue OLEDs employing this thermally stable compound as the emitting host exhibit unusual endurance for high currents. Injection current over 5,000 mA/cm2 and maximal brightness of~80,000 cd/m2 had been demonstrated, representing the highest values reported for blue OLEDs under dc driving. In addition, a series of oligofluorene homologues have been synthesized. These oligofluorenes exhibit interesting reversible bipolar redox properties and excellent morphological and thermal stability. Furthermore, nondispersive ambipolar high hole and electron mobilities over 10-3 cm2/V.s can be achieved with these oligo(9,9-diarylfluorene)s. In particular, the electron mobility observed represents the highest ever reported for amorphous molecular solids. These intriguing properties together with the high quantum yields in thin films make these oligo(9,9-diarylfluorene)s are promising for OLEDs applications as efficient blue emitters. In this meeting, the synthesis and properties of these materials and their highly efficient OLEDs device characteristics will be discussed.