南京师大学报(自然科学版)
南京師大學報(自然科學版)
남경사대학보(자연과학판)
JOURNAL OF NANJING NORMAL UNIVERSITY (NATURAL SCIENCE EDITION)
2007年
2期
1-5
,共5页
捕食者-食饵系统%Holling type Ⅳ%脉冲效应%灭绝%持续生存
捕食者-食餌繫統%Holling type Ⅳ%脈遲效應%滅絕%持續生存
포식자-식이계통%Holling type Ⅳ%맥충효응%멸절%지속생존
predator-prey system%Holling type Ⅳ%impulsive effect%extinction%permanence
构建和分析了在固定时刻脉冲投放捕食者且具有Holling Ⅳ功能性反应的一个捕食者两个食饵系统,利用脉冲比较定理和微分方程的分析方法,得到了平凡周期解稳定和系统持续生存的条件.
構建和分析瞭在固定時刻脈遲投放捕食者且具有Holling Ⅳ功能性反應的一箇捕食者兩箇食餌繫統,利用脈遲比較定理和微分方程的分析方法,得到瞭平凡週期解穩定和繫統持續生存的條件.
구건화분석료재고정시각맥충투방포식자차구유Holling Ⅳ공능성반응적일개포식자량개식이계통,이용맥충비교정리화미분방정적분석방법,득도료평범주기해은정화계통지속생존적조건.
A Holling type Ⅳ Lotka-Volterra one-predator two-prey system with impulsive effect on predator at fixed moments is investigated. Conditions for the stability of the trivial peridic solution and the permanence of the system are established via comparison theorem of impulsive differential equation and analytic methods of differential equation theory.