数学年刊A辑
數學年刊A輯
수학년간A집
CHINESE ANNALS OF MATHEMATICS,SERIES A
2010年
1期
35-42
,共8页
κ_2代数%Yoneda-Ext代数%分段Koszul代数
κ_2代數%Yoneda-Ext代數%分段Koszul代數
κ_2대수%Yoneda-Ext대수%분단Koszul대수
κ_2 algebra%Yoneda-Ext algebra%Piecewise-Koszul algebra
广义分段Koszul代数(简称为κ_p代数)一般是一类二次代数,其平凡模允许有非单纯的投射分解.利用Yoneda-Ext代数E(A)给出了分次代数A是κ_p代数的一个充分条件,同时讨论了κ_p代数的商代数是否继承κ_p性质.
廣義分段Koszul代數(簡稱為κ_p代數)一般是一類二次代數,其平凡模允許有非單純的投射分解.利用Yoneda-Ext代數E(A)給齣瞭分次代數A是κ_p代數的一箇充分條件,同時討論瞭κ_p代數的商代數是否繼承κ_p性質.
엄의분단Koszul대수(간칭위κ_p대수)일반시일류이차대수,기평범모윤허유비단순적투사분해.이용Yoneda-Ext대수E(A)급출료분차대수A시κ_p대수적일개충분조건,동시토론료κ_p대수적상대수시부계승κ_p성질.
The generalized piecewise-Koszul algebras (also called κ_p algebras for short) are generally a class of quadratic algebras whose trivial modules admitting non-pure resolutions.The authors provide a sufficient condition for a graded algebra A to be κ_p in terms of its Yoneda-Ext algebra E(A),and also discuss whether the factor algebras of κ_p inherit this property.