环境污染与防治
環境汙染與防治
배경오염여방치
ENVIRONMENTAL POLLUTION AND CONTROL
2010年
3期
23-27,33
,共6页
黄磊%王光辉%于荣%邓南圣
黃磊%王光輝%于榮%鄧南聖
황뢰%왕광휘%우영%산남골
菲%甘氨酸-β-环糊精%增溶%解吸
菲%甘氨痠-β-環糊精%增溶%解吸
비%감안산-β-배호정%증용%해흡
phenanthrene%glycine-β-cyclodextrin%ehanced solubilization%desorption
为改善β-环糊精的水溶性,将β-环糊精和甘氨酸在碱性条件下用环氧氯丙烷连接起来,得到水溶性极好的甘氨酸-β-环糊精,研究了甘氨酸-β-环糊精对菲的增溶、解吸行为,考察了pH、甘氨酸-β-环糊精初始浓度,温度、不同环糊精类型对菲解吸的影响.结果表明,甘氨酸-β-环糊精对菲的增溶效果显著.其初始质量浓度为30g/L时,对菲的增溶倍数可以达到近30倍;甘氨酸-β-环糊精对菲的解吸随pH的升高而降低;升高甘氨酸-β-环糊精初始浓度和温度有利于菲的解吸;甘氨酸-β-环糊精对菲的解吸好于α-环糊精和β-环糊精,甘氨酸-β-环糊精对菲污染土壤的解吸符合准二级动力学方程.该静态解吸研究可以为菲污染土壤的修复提供基础信息.
為改善β-環糊精的水溶性,將β-環糊精和甘氨痠在堿性條件下用環氧氯丙烷連接起來,得到水溶性極好的甘氨痠-β-環糊精,研究瞭甘氨痠-β-環糊精對菲的增溶、解吸行為,攷察瞭pH、甘氨痠-β-環糊精初始濃度,溫度、不同環糊精類型對菲解吸的影響.結果錶明,甘氨痠-β-環糊精對菲的增溶效果顯著.其初始質量濃度為30g/L時,對菲的增溶倍數可以達到近30倍;甘氨痠-β-環糊精對菲的解吸隨pH的升高而降低;升高甘氨痠-β-環糊精初始濃度和溫度有利于菲的解吸;甘氨痠-β-環糊精對菲的解吸好于α-環糊精和β-環糊精,甘氨痠-β-環糊精對菲汙染土壤的解吸符閤準二級動力學方程.該靜態解吸研究可以為菲汙染土壤的脩複提供基礎信息.
위개선β-배호정적수용성,장β-배호정화감안산재감성조건하용배양록병완련접기래,득도수용성겁호적감안산-β-배호정,연구료감안산-β-배호정대비적증용、해흡행위,고찰료pH、감안산-β-배호정초시농도,온도、불동배호정류형대비해흡적영향.결과표명,감안산-β-배호정대비적증용효과현저.기초시질량농도위30g/L시,대비적증용배수가이체도근30배;감안산-β-배호정대비적해흡수pH적승고이강저;승고감안산-β-배호정초시농도화온도유리우비적해흡;감안산-β-배호정대비적해흡호우α-배호정화β-배호정,감안산-β-배호정대비오염토양적해흡부합준이급동역학방정.해정태해흡연구가이위비오염토양적수복제공기출신식.
High water soluble glycine-β-cyclodextrin was synthesized by β-cyclodextrin and glycine under basic condition with epichlorohydrin used as the cross-linking agent. The effects of obtained glycine-p-cyclodextrin on enhanced soiubilization and desroption behavior of phenanthrene in soil was studied, and the influence factors of phenanthrene desorption, such as pH, initial concentration of g]ycine-β-cyclodextrin, temperature and CD type, were also investigated and described in details. The IR spectra of glycine-β-cyclodextrin showed that the added hydrophilic groups such as amide and carboxy improved the poor solubility of -β-cyclodextrin, and inner hydrophobic structure of β-cyclo-dextrin could accelerate the solution of hydrophobic organic matters. The obtained glycine-β-cyclodextrin presented perfect capacity of phenanthrene solubilization, 30 g/L of glycine-β-cyclodextrin could increase the solubility of phenanthrene by about 30 times. A higher pH resulted in a lower efficiency of phenanthrene desorption in soil, and the phe-nanthrene desorption efficiency increased with increasing temperature and initial glycine-β-cyclodextrin concentration. The data of phenanthrene desorption in soil were well fitted by the pseudo second-order rate equation. This static desorption research provided some fundamental information for the remediation of phenanthrene-contaminated soil.