河北工业大学学报
河北工業大學學報
하북공업대학학보
JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY
2010年
2期
4-8
,共5页
微结构%均匀化方法%拓扑优化%有限元分析%力学性能
微結構%均勻化方法%拓撲優化%有限元分析%力學性能
미결구%균균화방법%탁복우화%유한원분석%역학성능
microstructure%homogenization method%topology optimization%FEA%mechanics properties
在分析均匀化拓扑优化方法中常用微结构模型的基础上,提出了一种正方形多孔微结构模型.然后给出了其边界条件的处理方法,并设计了相应的均匀化程序.最后给出了以结构柔顺度最小化为目标函数,以整体体积约束为限制条件的拓扑优化之数学模型,并通过算例对正方形多孔微结构模型进行了拓扑优化的可行性验证.
在分析均勻化拓撲優化方法中常用微結構模型的基礎上,提齣瞭一種正方形多孔微結構模型.然後給齣瞭其邊界條件的處理方法,併設計瞭相應的均勻化程序.最後給齣瞭以結構柔順度最小化為目標函數,以整體體積約束為限製條件的拓撲優化之數學模型,併通過算例對正方形多孔微結構模型進行瞭拓撲優化的可行性驗證.
재분석균균화탁복우화방법중상용미결구모형적기출상,제출료일충정방형다공미결구모형.연후급출료기변계조건적처리방법,병설계료상응적균균화정서.최후급출료이결구유순도최소화위목표함수,이정체체적약속위한제조건적탁복우화지수학모형,병통과산례대정방형다공미결구모형진행료탁복우화적가행성험증.
Different microstructure models which appeared in recent years are described. One kind of porous two-dimensional microstructure models based on homogenization method is constructed. Combining FEA and periodic boundary conditions,the solution process for asymptotic homogenization equation and the method predicting effective mechanics properties in engineering are provided. The mathematical models based on porous microstructure which takes minimum structure averaged compliance as the objective function are established,then the update method of the designs variable based on the porous microstructure can be gotten when optimization iterates.