中华儿科杂志
中華兒科雜誌
중화인과잡지
Chinese Journal of Pediatrics
2011年
2期
139-145
,共7页
黄邀%傅君芬%施红波%刘利蕊
黃邀%傅君芬%施紅波%劉利蕊
황요%부군분%시홍파%류리예
大鼠%脂肪肝%磷脂酶A2%溶血磷脂酰胆碱类
大鼠%脂肪肝%燐脂酶A2%溶血燐脂酰膽堿類
대서%지방간%린지매A2%용혈린지선담감류
Rats%Fatty liver%Phospholipases A2%Lysophosphatidylcholines
目的 观察二甲双胍对非酒精性脂肪肝病的干预作用及其对肝细胞脂性凋亡磷脂酶A2/溶血磷脂酰胆碱通路的影响.方法 36只雄性SD大鼠分成3组:普通饮食组(Ⅰ组)、高脂饮食组(Ⅱ组)、二甲双胍干预组(Ⅲ组)各12只,喂养10周处死,称体重、肝重,测血清谷丙转氨酶、甘油三酯、胆固醇、低密度脂蛋白胆固醇、脂蛋白(a)、空腹血糖、空腹胰岛素、游离脂肪酸、溶血磷脂酰胆碱、磷脂酶A2等,测肝脂质(肝脏甘油三酯、胆固醇),逆转录聚合酶链反应(RT-PCR)法检测肝脏磷脂酶A2 mRNA表达,观察肝组织病理变化.结果 (1)高脂饮食组肝重(g)(16.92±2.49 vs.12.16±0.82),肝指数(0.034±0.004 vs.0.026±0.002),血清谷丙转氨酶(U/L)(45.43±9.73 vs.29.42±6.73)、甘油三酯(mmol/L)(1.22±0.24 vs.0.85±0.19)、胆固醇(mmol/L)(2.00±0.37 vs.1.49±0.33)、脂蛋白(a)(mmol/L)(743.86±32.19 vs.648.42±78.87)、低密度脂蛋白胆固醇(mmol/L)(1.31±0.35 vs.0.65±0.22)、空腹胰岛素(mmol/L)(22.16±5.16 vs.16.86±5.35)、稳态模型胰岛素抵抗指数(5.10±1.45 vs.3.59±0.99)、游离脂肪酸(mEq/L)(0.57±0.10 vs.0.35±0.07)、分泌型磷脂酶A2(sPLA2)[μmol(min·ml)](0.130±0.016 vs.0.098±0.024)、溶血磷脂酰胆碱(μmol/L)(707.26±92.48 vs.508.87±96.50)、瘦素水平(pg/ml)(80.08±17.73 vs.65.儿±14.09),肝脏甘油三酯(mg/g)(13.57±0.65 vs.12.03±1.14)、胆固醇(mg/g)(2.19±0.15 vs.1.94±0.12)较普通饮食组高(P均<0.05),脂肪变性程度明显加重,sPLA2 mRNA表达显著增高.(2)二甲双胍干预组体重(g)(394.40±33.10 vs.491.86±26.45),肝重(g)(13.24±1.16 vs.16.92±2.49),血清谷丙转氨酶(U/L)(30.40±4.50 vs.45.43±9.73)、甘油三酯(mmol/L)(0.75±0.19 vs.1.22±0.24)、胆固醇(mmol/L)(1.61±0.38 vs.2.00±0.37)、空腹胰岛素(mmol/L)(16.96±5.60 vs.22.16±5.16)、稳态模型胰岛素抵抗指数(3.75±1.41 vs.5.10±1.45)、sPLA2[μmol/(min·ml)](0.101±0.009 vs.0.130±0.016)、溶血磷脂酰胆碱水平(μmol/L)(549.92±90.78 vs.707.26±92.48),肝脏甘油三酯(mg/g)(11.23±1.70 vs.13.57 ±0.65)、胆固醇(mg/g)(1.97±0.20 vs.2.19±0.15)较高脂饮食组低(P均<0.05),脂肪变性程度显著减轻,sPLA2 mRNA表达显著降低.(3)二甲双胍干预组大鼠肝指数(0.034±0.004 vs.0.026±0.002)、低密度脂蛋白胆固醇(mmol/L)(0.96±0.34vs.0.65±0.22)较普通饮食组高(P<0.05),脂肪变性程度、sPLA2 mRNA表达等差异无统计学意义(P>0.05).结论 二甲双胍对高脂饮食诱导大鼠非酒精性脂肪肝病有干预作用,其作用可能与改善胰岛素抵抗,降低分泌型磷脂酶A2基因表达,降低血清分泌型磷脂酶A2、溶血磷脂酰胆碱水平,减轻炎症反应和保护线粒体功能有关.
目的 觀察二甲雙胍對非酒精性脂肪肝病的榦預作用及其對肝細胞脂性凋亡燐脂酶A2/溶血燐脂酰膽堿通路的影響.方法 36隻雄性SD大鼠分成3組:普通飲食組(Ⅰ組)、高脂飲食組(Ⅱ組)、二甲雙胍榦預組(Ⅲ組)各12隻,餵養10週處死,稱體重、肝重,測血清穀丙轉氨酶、甘油三酯、膽固醇、低密度脂蛋白膽固醇、脂蛋白(a)、空腹血糖、空腹胰島素、遊離脂肪痠、溶血燐脂酰膽堿、燐脂酶A2等,測肝脂質(肝髒甘油三酯、膽固醇),逆轉錄聚閤酶鏈反應(RT-PCR)法檢測肝髒燐脂酶A2 mRNA錶達,觀察肝組織病理變化.結果 (1)高脂飲食組肝重(g)(16.92±2.49 vs.12.16±0.82),肝指數(0.034±0.004 vs.0.026±0.002),血清穀丙轉氨酶(U/L)(45.43±9.73 vs.29.42±6.73)、甘油三酯(mmol/L)(1.22±0.24 vs.0.85±0.19)、膽固醇(mmol/L)(2.00±0.37 vs.1.49±0.33)、脂蛋白(a)(mmol/L)(743.86±32.19 vs.648.42±78.87)、低密度脂蛋白膽固醇(mmol/L)(1.31±0.35 vs.0.65±0.22)、空腹胰島素(mmol/L)(22.16±5.16 vs.16.86±5.35)、穩態模型胰島素牴抗指數(5.10±1.45 vs.3.59±0.99)、遊離脂肪痠(mEq/L)(0.57±0.10 vs.0.35±0.07)、分泌型燐脂酶A2(sPLA2)[μmol(min·ml)](0.130±0.016 vs.0.098±0.024)、溶血燐脂酰膽堿(μmol/L)(707.26±92.48 vs.508.87±96.50)、瘦素水平(pg/ml)(80.08±17.73 vs.65.兒±14.09),肝髒甘油三酯(mg/g)(13.57±0.65 vs.12.03±1.14)、膽固醇(mg/g)(2.19±0.15 vs.1.94±0.12)較普通飲食組高(P均<0.05),脂肪變性程度明顯加重,sPLA2 mRNA錶達顯著增高.(2)二甲雙胍榦預組體重(g)(394.40±33.10 vs.491.86±26.45),肝重(g)(13.24±1.16 vs.16.92±2.49),血清穀丙轉氨酶(U/L)(30.40±4.50 vs.45.43±9.73)、甘油三酯(mmol/L)(0.75±0.19 vs.1.22±0.24)、膽固醇(mmol/L)(1.61±0.38 vs.2.00±0.37)、空腹胰島素(mmol/L)(16.96±5.60 vs.22.16±5.16)、穩態模型胰島素牴抗指數(3.75±1.41 vs.5.10±1.45)、sPLA2[μmol/(min·ml)](0.101±0.009 vs.0.130±0.016)、溶血燐脂酰膽堿水平(μmol/L)(549.92±90.78 vs.707.26±92.48),肝髒甘油三酯(mg/g)(11.23±1.70 vs.13.57 ±0.65)、膽固醇(mg/g)(1.97±0.20 vs.2.19±0.15)較高脂飲食組低(P均<0.05),脂肪變性程度顯著減輕,sPLA2 mRNA錶達顯著降低.(3)二甲雙胍榦預組大鼠肝指數(0.034±0.004 vs.0.026±0.002)、低密度脂蛋白膽固醇(mmol/L)(0.96±0.34vs.0.65±0.22)較普通飲食組高(P<0.05),脂肪變性程度、sPLA2 mRNA錶達等差異無統計學意義(P>0.05).結論 二甲雙胍對高脂飲食誘導大鼠非酒精性脂肪肝病有榦預作用,其作用可能與改善胰島素牴抗,降低分泌型燐脂酶A2基因錶達,降低血清分泌型燐脂酶A2、溶血燐脂酰膽堿水平,減輕炎癥反應和保護線粒體功能有關.
목적 관찰이갑쌍고대비주정성지방간병적간예작용급기대간세포지성조망린지매A2/용혈린지선담감통로적영향.방법 36지웅성SD대서분성3조:보통음식조(Ⅰ조)、고지음식조(Ⅱ조)、이갑쌍고간예조(Ⅲ조)각12지,위양10주처사,칭체중、간중,측혈청곡병전안매、감유삼지、담고순、저밀도지단백담고순、지단백(a)、공복혈당、공복이도소、유리지방산、용혈린지선담감、린지매A2등,측간지질(간장감유삼지、담고순),역전록취합매련반응(RT-PCR)법검측간장린지매A2 mRNA표체,관찰간조직병리변화.결과 (1)고지음식조간중(g)(16.92±2.49 vs.12.16±0.82),간지수(0.034±0.004 vs.0.026±0.002),혈청곡병전안매(U/L)(45.43±9.73 vs.29.42±6.73)、감유삼지(mmol/L)(1.22±0.24 vs.0.85±0.19)、담고순(mmol/L)(2.00±0.37 vs.1.49±0.33)、지단백(a)(mmol/L)(743.86±32.19 vs.648.42±78.87)、저밀도지단백담고순(mmol/L)(1.31±0.35 vs.0.65±0.22)、공복이도소(mmol/L)(22.16±5.16 vs.16.86±5.35)、은태모형이도소저항지수(5.10±1.45 vs.3.59±0.99)、유리지방산(mEq/L)(0.57±0.10 vs.0.35±0.07)、분비형린지매A2(sPLA2)[μmol(min·ml)](0.130±0.016 vs.0.098±0.024)、용혈린지선담감(μmol/L)(707.26±92.48 vs.508.87±96.50)、수소수평(pg/ml)(80.08±17.73 vs.65.인±14.09),간장감유삼지(mg/g)(13.57±0.65 vs.12.03±1.14)、담고순(mg/g)(2.19±0.15 vs.1.94±0.12)교보통음식조고(P균<0.05),지방변성정도명현가중,sPLA2 mRNA표체현저증고.(2)이갑쌍고간예조체중(g)(394.40±33.10 vs.491.86±26.45),간중(g)(13.24±1.16 vs.16.92±2.49),혈청곡병전안매(U/L)(30.40±4.50 vs.45.43±9.73)、감유삼지(mmol/L)(0.75±0.19 vs.1.22±0.24)、담고순(mmol/L)(1.61±0.38 vs.2.00±0.37)、공복이도소(mmol/L)(16.96±5.60 vs.22.16±5.16)、은태모형이도소저항지수(3.75±1.41 vs.5.10±1.45)、sPLA2[μmol/(min·ml)](0.101±0.009 vs.0.130±0.016)、용혈린지선담감수평(μmol/L)(549.92±90.78 vs.707.26±92.48),간장감유삼지(mg/g)(11.23±1.70 vs.13.57 ±0.65)、담고순(mg/g)(1.97±0.20 vs.2.19±0.15)교고지음식조저(P균<0.05),지방변성정도현저감경,sPLA2 mRNA표체현저강저.(3)이갑쌍고간예조대서간지수(0.034±0.004 vs.0.026±0.002)、저밀도지단백담고순(mmol/L)(0.96±0.34vs.0.65±0.22)교보통음식조고(P<0.05),지방변성정도、sPLA2 mRNA표체등차이무통계학의의(P>0.05).결론 이갑쌍고대고지음식유도대서비주정성지방간병유간예작용,기작용가능여개선이도소저항,강저분비형린지매A2기인표체,강저혈청분비형린지매A2、용혈린지선담감수평,감경염증반응화보호선립체공능유관.
Objective To investigate the potential preventive effects of metformin on non-alcoholic fatty liver disease (NAFLD) and roles of phospholipase A2/lysophosphatidylcholine pathway in hepatocyte lipoapoptosis in a rat NAFLD model induced by high-fat diet. Method Male SD rats ( n = 36 ) were randomly divided into three groups with 12 rats in each and treated with different diet and drugs: group Ⅰ:ordinary diet, group Ⅱ: high-fat diet, group Ⅲ: high-fat diet and metformin. Ten weeks later, the rats were sacrificed and their body weight and liver weight were obtained, serum lipid metabolic indexes, insulin resistance indexes and secretory phospholipase A2( sPLA2 ), lysophosphatidylcholine(LPC) levels and other parameters were measured. Phospholipase A2 mRNA expression levels were measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR). In addition, the histological changes of liver tissue were analyzed. Result Compared to ordinary diet group,the rat's liver weight (g) ( 16.92 ±2.49 vs. 12.16 ±0.82) ,hepatic exponent ( 0.034 ± 0.004 vs. 0.026 ± 0.002 ), serum alanine aminotransferase (U/L)(45.43 ±9.73 vs. 29.42 ± 6.73), triglyceride(mmol/L) ( 1.22 ±0.24 vs. 0.85 ±0.19) ,cholesterol (mmol/L)(2.00 ±0.37 vs. 1.49 ± 0.33),lipoprotein(a) (mmol/L) (743.86 ±32.19 vs. 648.42 ±78. 87), low-density lipoprotein (mmol/L) ( 1.31 ± 0.35 vs. 0.65 ± 0.22 ), insulin (mmol/L) ( 22.16 ±5.16 vs. 16.86 ±5.35 ),insulin resistance index(5.10 ± 1.45 vs. 3.59 ± 0.99 ),free fatty acid(mEq/L)(0.57 ± 0.10 vs. 0.35 ± 0.07 ), sPLA2 [μmol/( min · ml ) ] ( 0.130 ± 0.016 vs. 0.098 ± 0.024 ),lysophosphatidylcholine( μ mol/L) ( 707.26 ± 92.48 vs. 508. 87 ± 96. 50 ), leptin (pg/ml) ( 80.08 ± 17.73 vs. 65.11 ± 14.09 ), liver triglyceride ( mg/g ) ( 13.57 ± 0.65 vs. 12.03 ± 1.14 ), cholesterol ( mg/g ) (2.19 ±0.15 vs. 1.94 ± 0.12 ) (P < 0.05 ) were significantly increased in high-fat diet group. Moreover,degree of hepatic steatosis was significantly higher and sPLA2 mRNA expression was also significantly increased. Secondly,in comparison with high-fat diet group, early metformin treatment significantly reduced the rat's body weight(g) ( 394.40 ± 33.10 vs. 491.86 ± 26.45 ), liver weight(g) ( 13.24 ± 1.16 vs.16. 92 ± 2. 49 ), serum alanine aminotransferase (U/L) ( 30.40 ± 4.50 vs. 45.43 ± 9.73 ), triglyceride (mmol/L) (0.75 ±0.19 vs. 1.22 ±0.24), cholesterol (mmol/L) (1.61 ±0.38 vs. 2.00 ±0.37),insulin(mmol/L) (16. 96 ± 5.60 vs. 22.16 ± 5.16 ), insulin resistance index (3.75 ± 1.41 vs. 5.10 ±1.45 ), sPLA2 [μmol/( min·ml) ] (0.101 ±0.009 vs. 0.130 ±0.016), lysophosphatidylcholine( μmol/L) (549.92 ± 90.78 vs. 707.26 ± 92.48), liver triglyceride (mg/g) ( 11.23 ± 1.70 vs. 13.57 ± 0.65),cholesterol(mg/g) ( 1.97 ±0.20 vs. 2.19 ±0.15 ) ( P <0.05 ). Moreover, degree of hepatic steatosis was significantly lower and sPLA2 mRNA expression was also significantly decreased by metformin. Thirdly ,when compared to ordinary diet group, metformin could also significantly increase hepatic expotent (0.034 ±0.004 vs. 0.026 ± 0.002 ) and low-density lipoprotein level (mmol/L) ( 0.96 ± 0.34 vs. 0.65 ± 0.22 )(P<0.05). However, it had no impact on hepatic steatosis and sPLA2 expression (P > 0.05 ).Conclusion It was indicated that metformin has potent effects on improving lipid metabolism and insulin resistance in high-fat diet induced non-alcoholic fatty liver disease rat model. The liver protective mechanisms of metformin in non-alcoholic fatty liver disease may be contributed to down-regulation of secretory phospholipase A2 mRNA expression, decrease in serum secretory phospholipase A2,lysophosphatidylcholine, lower inflammatory response and protect mitochondrial function.