黑龙江大学自然科学学报
黑龍江大學自然科學學報
흑룡강대학자연과학학보
JOURNAL OF NATURAL SCIENCE OF HEILONGJIANG UNIVERSITY
2007年
4期
451-454
,共4页
双圈图%Laplacian矩阵%代数连通度
雙圈圖%Laplacian矩陣%代數連通度
쌍권도%Laplacian구진%대수련통도
Bicyclic graphs%Laplacian matrix%Algebraic connectivity
边数等于点数加1的连通图称为双圈图.研究双圈图G的代数连通度,记作α(G),证明了结论:对所有的n(n≥10)阶双圈图G都有α(G)≤1成立,并且确定了满足α(G)=1的所有,n(n≥10)阶双圈图.
邊數等于點數加1的連通圖稱為雙圈圖.研究雙圈圖G的代數連通度,記作α(G),證明瞭結論:對所有的n(n≥10)階雙圈圖G都有α(G)≤1成立,併且確定瞭滿足α(G)=1的所有,n(n≥10)階雙圈圖.
변수등우점수가1적련통도칭위쌍권도.연구쌍권도G적대수련통도,기작α(G),증명료결론:대소유적n(n≥10)계쌍권도G도유α(G)≤1성립,병차학정료만족α(G)=1적소유,n(n≥10)계쌍권도.
Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one.The aothors study the algebraic connectivity α(G)of a bicyclic graph G on n vertices and prove that α(G)≤1 for all bicyclic graphs G on n(n≥10)vertices.Funhermore they determine all the bicyclic graphs G on n(,n≥10)vertices such that α(G)=1.