中国草地学报
中國草地學報
중국초지학보
CHINESE JOURNAL OF GRASSLAND
2010年
1期
58-63
,共6页
管博%周道玮%田雨%杨季云%肖模昕
管博%週道瑋%田雨%楊季雲%肖模昕
관박%주도위%전우%양계운%초모흔
花苜蓿%NaCl%Na_2CO_3%发芽率%发芽速度
花苜蓿%NaCl%Na_2CO_3%髮芽率%髮芽速度
화목숙%NaCl%Na_2CO_3%발아솔%발아속도
Medicago ruthenica%NaCl%Na_2CO_3%Germination percentage%Germination rate
用3个变温处理(10/20℃,15/25℃,20/30℃)、6个浓度盐处理(盐为NaCl,浓度为0、50mmol/L、100mmol/L、150mmol/L、200mmol/L、250mmol/L)和碱处理(碱为Na_2CO_3,浓度为0、5mmol/L、10mmol/L、15mmol/L、20mmol/L、25mmol/L)研究盐、碱以及盐碱与温度的交互作用对两种不同来源花苜蓿种子萌发的影响.结果表明:随着盐、碱浓度的升高,种子发芽率、发芽速度均显著降低.低浓度盐、碱条件下,温度对花苜蓿种子发芽影响不显著;但在较高浓度的盐、碱条件下,不同温度处理对种子发芽率和发芽速度的影响差异显著;最适发芽温度为15/25℃.随着盐浓度升高,花苜蓿种子胚根长度逐渐减小,但胚轴长度没有明显变化;在一定浓度Na_2CO_3胁迫下花苜蓿能正常发芽,当Na_2CO_3浓度为15mmol/L(pH=10.95)时,两种花苜蓿发芽率均高于60%.两种花苜蓿相比较,林下花苜蓿抗盐碱性高于草甸花苜蓿.
用3箇變溫處理(10/20℃,15/25℃,20/30℃)、6箇濃度鹽處理(鹽為NaCl,濃度為0、50mmol/L、100mmol/L、150mmol/L、200mmol/L、250mmol/L)和堿處理(堿為Na_2CO_3,濃度為0、5mmol/L、10mmol/L、15mmol/L、20mmol/L、25mmol/L)研究鹽、堿以及鹽堿與溫度的交互作用對兩種不同來源花苜蓿種子萌髮的影響.結果錶明:隨著鹽、堿濃度的升高,種子髮芽率、髮芽速度均顯著降低.低濃度鹽、堿條件下,溫度對花苜蓿種子髮芽影響不顯著;但在較高濃度的鹽、堿條件下,不同溫度處理對種子髮芽率和髮芽速度的影響差異顯著;最適髮芽溫度為15/25℃.隨著鹽濃度升高,花苜蓿種子胚根長度逐漸減小,但胚軸長度沒有明顯變化;在一定濃度Na_2CO_3脅迫下花苜蓿能正常髮芽,噹Na_2CO_3濃度為15mmol/L(pH=10.95)時,兩種花苜蓿髮芽率均高于60%.兩種花苜蓿相比較,林下花苜蓿抗鹽堿性高于草甸花苜蓿.
용3개변온처리(10/20℃,15/25℃,20/30℃)、6개농도염처리(염위NaCl,농도위0、50mmol/L、100mmol/L、150mmol/L、200mmol/L、250mmol/L)화감처리(감위Na_2CO_3,농도위0、5mmol/L、10mmol/L、15mmol/L、20mmol/L、25mmol/L)연구염、감이급염감여온도적교호작용대량충불동래원화목숙충자맹발적영향.결과표명:수착염、감농도적승고,충자발아솔、발아속도균현저강저.저농도염、감조건하,온도대화목숙충자발아영향불현저;단재교고농도적염、감조건하,불동온도처리대충자발아솔화발아속도적영향차이현저;최괄발아온도위15/25℃.수착염농도승고,화목숙충자배근장도축점감소,단배축장도몰유명현변화;재일정농도Na_2CO_3협박하화목숙능정상발아,당Na_2CO_3농도위15mmol/L(pH=10.95)시,량충화목숙발아솔균고우60%.량충화목숙상비교,림하화목숙항염감성고우초전화목숙.
The effects of salinity, alkalinity and temperature on germination of two accessions of Medicago ruthenica under different treatments of temperature (10/20℃,15/25℃,20/30℃), NaCl (0, 50mmol/L, 100mmol/L, 150mmol/L, 200mmol/L, 250mmol/L) and Na_2CO_3 (0,5mmol/L,10mmol/L,15mmol/L,20mmol/L,25mmol/L) were studied. The results showed that the germination percentage and the germination rate were not significantly affected by low salt concentrations and their interactions with temperature, but at higher level of salt concentrations, there were significant effects on germination percentage and the germination rate. The optimum temperature for seed germination was 15/25℃. Radicles of M. ruthenica were significantly affected by low salt concentrations, but not for hypocotyl. M. ruthenica germinated well in some Na_2CO_3 concentrations lower than 20mmol/L, germination percentage of two accessions of M. ruthenica were higher than 60% at 15mmol/L Na2CO3 (pH=10.95). The tolerance of Linxia was higher than Caodian.