硅酸盐通报
硅痠鹽通報
규산염통보
BULLETIN OF THE CHINESE CERAMIC SOCIETY
2010年
1期
204-208
,共5页
李金凯%赵蔚琳%刘宗明%韩亚东
李金凱%趙蔚琳%劉宗明%韓亞東
리금개%조위림%류종명%한아동
纳米流体%制备%超声振动%导热系数
納米流體%製備%超聲振動%導熱繫數
납미류체%제비%초성진동%도열계수
nanofluid%preparation%ultrasonic vibration%thermal conductivity
采用两步法制备低浓度Al_2O_3(40 nm)-水纳米流体,其体积分数为0.1%~0.5%.制备过程中不加分散剂,采用超声振动,并对其进行Zeta电位、粒度和吸光度测试表征其悬浮稳定性,结果表明当超声时间为3 h时,Al_2O_3-水纳米流体悬浮稳定性最好.进一步测试其导热系数,结果表明Al_2O_3-水纳米流体的导热系数均高于水的导热系数;室温下(17 ℃)当体积分数从0.1%增加到0.5%时,其导热系数从5.40%增加到17.9%.对于体积分数为0.2%的Al_2O_3-水纳米流体,当温度从17 ℃增加到57 ℃时,相应的导热系数从7.23%增加到23%;实验还发现纳米流体导热系数与纳米粒子的体积分数和温度均呈非线性关系.
採用兩步法製備低濃度Al_2O_3(40 nm)-水納米流體,其體積分數為0.1%~0.5%.製備過程中不加分散劑,採用超聲振動,併對其進行Zeta電位、粒度和吸光度測試錶徵其懸浮穩定性,結果錶明噹超聲時間為3 h時,Al_2O_3-水納米流體懸浮穩定性最好.進一步測試其導熱繫數,結果錶明Al_2O_3-水納米流體的導熱繫數均高于水的導熱繫數;室溫下(17 ℃)噹體積分數從0.1%增加到0.5%時,其導熱繫數從5.40%增加到17.9%.對于體積分數為0.2%的Al_2O_3-水納米流體,噹溫度從17 ℃增加到57 ℃時,相應的導熱繫數從7.23%增加到23%;實驗還髮現納米流體導熱繫數與納米粒子的體積分數和溫度均呈非線性關繫.
채용량보법제비저농도Al_2O_3(40 nm)-수납미류체,기체적분수위0.1%~0.5%.제비과정중불가분산제,채용초성진동,병대기진행Zeta전위、립도화흡광도측시표정기현부은정성,결과표명당초성시간위3 h시,Al_2O_3-수납미류체현부은정성최호.진일보측시기도열계수,결과표명Al_2O_3-수납미류체적도열계수균고우수적도열계수;실온하(17 ℃)당체적분수종0.1%증가도0.5%시,기도열계수종5.40%증가도17.9%.대우체적분수위0.2%적Al_2O_3-수납미류체,당온도종17 ℃증가도57 ℃시,상응적도열계수종7.23%증가도23%;실험환발현납미류체도열계수여납미입자적체적분수화온도균정비선성관계.
Al_2O_3-water nanofluid with 40 nm particle size was produced with various volume concentrations from 0.1% to 0.5% using a two-step method with ultrasonication and without any surfactant. The analysis of zeta potential, particle size and absorbancy indicates that 3 hours of ultrasonic vibration can uniformly disperse the Al_2O_3 nanoparticles in water. In this experimental process, thermal conductivities were mearsured.The results show that the thermal conductivities of Al_2O_3-water nanafluids are all higher than water. The enhancement of thermal conductivity is 5.40%-17.9% in the low volume concentration range of 0.1%-0.5%. Enhancement of thermal conductivity is 7.23%-23% in the temperature range of 17-57 ℃ at a volume fraction of 0.2%. Furthermore, the experimental results show the thermal conductivities of Al_2O_3-water nanofluids increased nonlinearly with the nanoparticle volume concentration and temperature increasing.