数学研究
數學研究
수학연구
JOURNAL OF MATHEMATICAL STUDY
2011年
4期
325-335
,共11页
振荡奇异积分%粗糙核%加权估计
振盪奇異積分%粗糙覈%加權估計
진탕기이적분%조조핵%가권고계
oscillatory singular integral%rough kernel%weights
文研究一类位相较多项式更一般的振荡奇异积分算子.在积分核Ω∈Llog^+L(S^n-1)的条件下,建立了该类算子在加权Lp空间的有界性.
文研究一類位相較多項式更一般的振盪奇異積分算子.在積分覈Ω∈Llog^+L(S^n-1)的條件下,建立瞭該類算子在加權Lp空間的有界性.
문연구일류위상교다항식경일반적진탕기이적분산자.재적분핵Ω∈Llog^+L(S^n-1)적조건하,건립료해류산자재가권Lp공간적유계성.
In this paper, we study the weighted Lp estimates (1 〈 p 〈 ∞) for the oscillatory singular integral operator given by Tf(x)=p.v.∫Rn e^iФ(x,y)b(|x-y|)Ω(x-y)/|x-y|^n f(y)dy.The phase function Ф has the form Ф(x,y)=^l∑k=0 Pk(x)Фk(y-x),where Pk is a real polynomial on R^n, Фk is a real homogeneous function on Rn and is analytic on S^n-1. Ω is homogeneous of degree zero and ∫S^n-1Ω(x')dσ(x')=0, b is a bounded variation function on [0, ∞). We show that if Ω∈Llog^+L(S^n-1),then T is bounded on Lpw, provided w satisfies a condition similar to the Ap condition but involves rectangles arising from a covering of a star-shaped set related to Ω.