润滑与密封
潤滑與密封
윤활여밀봉
LUBRICATION ENGINEERING
2009年
7期
74-76
,共3页
刘玉兵%张宗扬%谭华%蒋永加
劉玉兵%張宗颺%譚華%蔣永加
류옥병%장종양%담화%장영가
发动机状态监测%监测标准%模糊神经网络%隶属函数
髮動機狀態鑑測%鑑測標準%模糊神經網絡%隸屬函數
발동궤상태감측%감측표준%모호신경망락%대속함수
engine condition monitoring%monitoring standards%fuzzy neural network (FNN)%fuzzy membership functions
针对传统的依靠单一参数对发动机进行状态监测的不足,利用模糊神经网络处理不确定性复杂问题的能力,融合多种监测参数的信息,建立了基于趋势分析的5级状态监测警报系统.首先从铁谱、振动和性能参数三方面优选监测参数,通过对大量历史数据的统计分析得到各监测参数的界限值,建立了发动机失效程度逐级递进的5级状态监测标准.然后建立隶属函数,通过计算隶属度实现了输入样本的模糊化.最后设计神经网络的结构,利用历史数据训练网络.通过对实例结果的分析证明了该模型的实效性.
針對傳統的依靠單一參數對髮動機進行狀態鑑測的不足,利用模糊神經網絡處理不確定性複雜問題的能力,融閤多種鑑測參數的信息,建立瞭基于趨勢分析的5級狀態鑑測警報繫統.首先從鐵譜、振動和性能參數三方麵優選鑑測參數,通過對大量歷史數據的統計分析得到各鑑測參數的界限值,建立瞭髮動機失效程度逐級遞進的5級狀態鑑測標準.然後建立隸屬函數,通過計算隸屬度實現瞭輸入樣本的模糊化.最後設計神經網絡的結構,利用歷史數據訓練網絡.通過對實例結果的分析證明瞭該模型的實效性.
침대전통적의고단일삼수대발동궤진행상태감측적불족,이용모호신경망락처리불학정성복잡문제적능력,융합다충감측삼수적신식,건립료기우추세분석적5급상태감측경보계통.수선종철보、진동화성능삼수삼방면우선감측삼수,통과대대량역사수거적통계분석득도각감측삼수적계한치,건립료발동궤실효정도축급체진적5급상태감측표준.연후건립대속함수,통과계산대속도실현료수입양본적모호화.최후설계신경망락적결구,이용역사수거훈련망락.통과대실례결과적분석증명료해모형적실효성.
Due to the defect of traditional engine condition monitoring depending on single parameter, the five-level con-dition monitoring alert system with fuzzy neural network (FNN) was established which is good at settling uncertainty and complicated problems. Optimal monitoring parameters were selected from the aspects of ferrography, vibration and perform-ante parameters. With sufficient historical data, limit values of parameters and reliable five-level condition monitoring standards were maintained and established by statistical analysis. Fuzzy membership functions were applied to transfer practical data into fuzzy data. The structure of neural network was designed and trained by sample data. The model was tested with original data and proved to be effective and reliable.