模糊系统与数学
模糊繫統與數學
모호계통여수학
FUZZY SYSTEMS AND MATHEMATICS
2005年
4期
109-114
,共6页
非紧模糊数空间%逼近性%下方图度量
非緊模糊數空間%逼近性%下方圖度量
비긴모호수공간%핍근성%하방도도량
Noncompact Fuzzy Number Space%Approximative Property%Endograph Metric
证明了非紧模糊数空间E~在下方图度量下关于模糊数的序是可逼近的.本文给出的证明方法是构造性的,从而说明了模糊数值积分如M-积分和G-积分等是可计算的.最后给出了E~中关于下方图度量的一些分析性质.
證明瞭非緊模糊數空間E~在下方圖度量下關于模糊數的序是可逼近的.本文給齣的證明方法是構造性的,從而說明瞭模糊數值積分如M-積分和G-積分等是可計算的.最後給齣瞭E~中關于下方圖度量的一些分析性質.
증명료비긴모호수공간E~재하방도도량하관우모호수적서시가핍근적.본문급출적증명방법시구조성적,종이설명료모호수치적분여M-적분화G-적분등시가계산적.최후급출료E~중관우하방도도량적일사분석성질.
In this paper it is proved that the endogragh metric is approximative with respect to orders on noncompact fuzzy number space E~. It is also shown that the endograph metric approach on orders on E~ is constructive, this shows that noncompact fuzzy-number-valued integrals such as M-integral and G-integral are computable. Finally some analytic properties with respect to the endograph metric on E~ are given.