南方医科大学学报
南方醫科大學學報
남방의과대학학보
JOURNAL OF SOUTHERN MEDICAL UNIVERSITY
2010年
3期
498-501
,共4页
谢松喜%李伟雄%黄玉娟%陈剑光%吴一龙
謝鬆喜%李偉雄%黃玉娟%陳劍光%吳一龍
사송희%리위웅%황옥연%진검광%오일룡
非小细胞肺癌%蛋白组学%SELDI-TOF-MS%早期诊断%放射治疗%脑转移
非小細胞肺癌%蛋白組學%SELDI-TOF-MS%早期診斷%放射治療%腦轉移
비소세포폐암%단백조학%SELDI-TOF-MS%조기진단%방사치료%뇌전이
non-small cell lung cancer%proteomics%surface-enhanced laser desorption/ionization-time of flight-mass spectrometry%early diagnosis%radiotherapy%brain metastases
目的 本研究旨在分析非小细胞肺癌(NSCLC)脑转移患者、非肿瘤患者和早期NSCLC无脑转移患者脑脊液的蛋白质谱,找出差异蛋白峰,建立NSCLC脑转移的蛋白质谱诊断模型.方法 收集上述三组患者的脑脊液标本各29例、23例和10例,采用表面增强激光解吸电离飞行时间质谱技术(SELDI-TOF-MS)进行检测,Biomarker Wizard软件统计分析三组样本的蛋白质峰,Biomarker pattems软件的决策树模型进行差异蛋白峰的比较和判别,建立分类决策树诊断模型,评价其诊断和应用价值.结果 脑转移组与早期无脑转移组有5个显著差异性表达蛋白质峰,运用m/z8698.00、1215.32和1245.70蛋白质峰将两组样本分开,诊断模型的灵敏度100%(29/29),特异度为100%(10/10).早期无脑转移组与非肿瘤组结果 有5个显著差异性表达蛋白峰,应用m/z 6050.00蛋白峰可以把无脑转移组和非肿瘤组分开,诊断模型的灵敏度为90.00%(9/10),特异度为78.26%(18/23).结论 采用SELDI技术可以发现三组患者的脑脊液存在显著差异表达蛋白质峰,利用这些差异蛋白质建立的蛋白质谱分类决策树状诊断模型具有较高的灵敏性和特异性.
目的 本研究旨在分析非小細胞肺癌(NSCLC)腦轉移患者、非腫瘤患者和早期NSCLC無腦轉移患者腦脊液的蛋白質譜,找齣差異蛋白峰,建立NSCLC腦轉移的蛋白質譜診斷模型.方法 收集上述三組患者的腦脊液標本各29例、23例和10例,採用錶麵增彊激光解吸電離飛行時間質譜技術(SELDI-TOF-MS)進行檢測,Biomarker Wizard軟件統計分析三組樣本的蛋白質峰,Biomarker pattems軟件的決策樹模型進行差異蛋白峰的比較和判彆,建立分類決策樹診斷模型,評價其診斷和應用價值.結果 腦轉移組與早期無腦轉移組有5箇顯著差異性錶達蛋白質峰,運用m/z8698.00、1215.32和1245.70蛋白質峰將兩組樣本分開,診斷模型的靈敏度100%(29/29),特異度為100%(10/10).早期無腦轉移組與非腫瘤組結果 有5箇顯著差異性錶達蛋白峰,應用m/z 6050.00蛋白峰可以把無腦轉移組和非腫瘤組分開,診斷模型的靈敏度為90.00%(9/10),特異度為78.26%(18/23).結論 採用SELDI技術可以髮現三組患者的腦脊液存在顯著差異錶達蛋白質峰,利用這些差異蛋白質建立的蛋白質譜分類決策樹狀診斷模型具有較高的靈敏性和特異性.
목적 본연구지재분석비소세포폐암(NSCLC)뇌전이환자、비종류환자화조기NSCLC무뇌전이환자뇌척액적단백질보,조출차이단백봉,건립NSCLC뇌전이적단백질보진단모형.방법 수집상술삼조환자적뇌척액표본각29례、23례화10례,채용표면증강격광해흡전리비행시간질보기술(SELDI-TOF-MS)진행검측,Biomarker Wizard연건통계분석삼조양본적단백질봉,Biomarker pattems연건적결책수모형진행차이단백봉적비교화판별,건립분류결책수진단모형,평개기진단화응용개치.결과 뇌전이조여조기무뇌전이조유5개현저차이성표체단백질봉,운용m/z8698.00、1215.32화1245.70단백질봉장량조양본분개,진단모형적령민도100%(29/29),특이도위100%(10/10).조기무뇌전이조여비종류조결과 유5개현저차이성표체단백봉,응용m/z 6050.00단백봉가이파무뇌전이조화비종류조분개,진단모형적령민도위90.00%(9/10),특이도위78.26%(18/23).결론 채용SELDI기술가이발현삼조환자적뇌척액존재현저차이표체단백질봉,이용저사차이단백질건립적단백질보분류결책수상진단모형구유교고적령민성화특이성.
Objective To establish a diagnostic model of protein fingerprint pattern in the cerebrospinal fluid (CSF) for non-small-cell lung cancer (NSCLC) patients with brain metastases. Methods The CSF samples were obtained from 29 NSCLC patients with brain metastasis, 23 non-tumor patients and 10 early-stage NSCLC patients without brain metastases for analysis of the protein expression profiles using surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS). The data were then analyzed by Biomarker Wizard software, and the tree analysis patterns were generated using the decision-tree model in Biomarker Patterns sol, ware. The diagnostic model was tested for its clinical application. Results Five protein peaks were identified showing differential expression between patients with brain metastases and those without brain metastases. Combination of the 3 protein peaks (m/z: 8698.00, 1215.32 and 1245.70) could discriminate these two samples with a sensitivity of 100.00% (29/29) and a specificity of 100.00% (23/23). Five proteins were differentially expressed between the NSCLC patients with brain metastases and the non-tumor patients. With one protein peak (m/z: 6050.00), these two samples could be discriminated with a sensitivity of 90.00% (9/10) and a specificity of 78.26% (18/23). Conclusion The established diagnostic model of CSF protein fingerprint pattern provides high sensitivity and specificity in the diagnosis of NSCLC with brain metastasis.