中华神经医学杂志
中華神經醫學雜誌
중화신경의학잡지
CHINESE JOURNAL OF NEUROMEDICINE
2008年
7期
698-701
,共4页
祝刚%石忠松%朱永华%李明昌%孙毅明%戴华浩%潘伟生%黄正松
祝剛%石忠鬆%硃永華%李明昌%孫毅明%戴華浩%潘偉生%黃正鬆
축강%석충송%주영화%리명창%손의명%대화호%반위생%황정송
颅内动脉瘤%G蛋白信号传导通路%基因表达谱
顱內動脈瘤%G蛋白信號傳導通路%基因錶達譜
로내동맥류%G단백신호전도통로%기인표체보
Intracranial aneurysm%Signal transduction pathway,G protein%Gene expressionprofiling
目的 采用基因芯片技术探讨G蛋白信号传导通路与颅内动脉瘤的相关性.方法 采集50例颅内动脉瘤患者的外周血.且将10例正常成人作为对照组.分离其血液单核细胞,另外收集6例手术切除的颅内动脉瘤组织标本和3例正常成人的脑动脉血管.提取总RNA,分别与含22 215个人类基因的寡核苷酸基因芯片杂交、洗脱、染色和扫描,分析检测数据.荧光定量RT-PCR法验证芯片检测结果.结果 在检测的22 215个基因中,颅内动脉瘤患者血液中共差异表达的基因有325个,颅内动脉瘤组织中差异表达水平均达2倍以上的基因有571个,生物信息学分析发现多个G蛋白信号传导通路的相关基因存在上调或下调表达.其中3个基因在动脉瘤组织和血液中均有差异表达,即上调表达的RAB31和下调表达的ARHGAP8和CENTG2.结论 G蛋白信号传导通路可能是颅内动脉瘤的一种重要发病机制,RAB31、ARHGAP8和CENTG2与颅内动脉瘤的关系值得进一步研究.
目的 採用基因芯片技術探討G蛋白信號傳導通路與顱內動脈瘤的相關性.方法 採集50例顱內動脈瘤患者的外週血.且將10例正常成人作為對照組.分離其血液單覈細胞,另外收集6例手術切除的顱內動脈瘤組織標本和3例正常成人的腦動脈血管.提取總RNA,分彆與含22 215箇人類基因的寡覈苷痠基因芯片雜交、洗脫、染色和掃描,分析檢測數據.熒光定量RT-PCR法驗證芯片檢測結果.結果 在檢測的22 215箇基因中,顱內動脈瘤患者血液中共差異錶達的基因有325箇,顱內動脈瘤組織中差異錶達水平均達2倍以上的基因有571箇,生物信息學分析髮現多箇G蛋白信號傳導通路的相關基因存在上調或下調錶達.其中3箇基因在動脈瘤組織和血液中均有差異錶達,即上調錶達的RAB31和下調錶達的ARHGAP8和CENTG2.結論 G蛋白信號傳導通路可能是顱內動脈瘤的一種重要髮病機製,RAB31、ARHGAP8和CENTG2與顱內動脈瘤的關繫值得進一步研究.
목적 채용기인심편기술탐토G단백신호전도통로여로내동맥류적상관성.방법 채집50례로내동맥류환자적외주혈.차장10례정상성인작위대조조.분리기혈액단핵세포,령외수집6례수술절제적로내동맥류조직표본화3례정상성인적뇌동맥혈관.제취총RNA,분별여함22 215개인류기인적과핵감산기인심편잡교、세탈、염색화소묘,분석검측수거.형광정량RT-PCR법험증심편검측결과.결과 재검측적22 215개기인중,로내동맥류환자혈액중공차이표체적기인유325개,로내동맥류조직중차이표체수평균체2배이상적기인유571개,생물신식학분석발현다개G단백신호전도통로적상관기인존재상조혹하조표체.기중3개기인재동맥류조직화혈액중균유차이표체,즉상조표체적RAB31화하조표체적ARHGAP8화CENTG2.결론 G단백신호전도통로가능시로내동맥류적일충중요발병궤제,RAB31、ARHGAP8화CENTG2여로내동맥류적관계치득진일보연구.
Objective To identify G protein signal transduction pathway related genes in peripheral blood mononuclear cells and aneurysm tissues from intracranial aneurysm patients using oligo-microarrays. Methods Blood samples from 50 intracranial aneurysms and 10 healthy human donors were obtained after informed consent. Peripheral blood mononuclear cells (PBMCs) were isolated from blood using Ficoll method. And aneurysm tissue samples from 6 intracraniai aneurysms and 3 healthy human intracranial arteries were obtained. The cDNA were retrotranscribed from the extracted RNA and the biotin-labeled cRNA derived from the transcription of cDNA were fragmented as probes. Then, the probes were hybridized with Affymetrix Human Genome UI33A Array. GeneArmy Scanner was used to screen the signals of hybridization and Microarray Suite software 5.0 was applied to analyze the expression of genes. Results There were 325 genes differently expressed in PBMCs from intracranial aneurysm patients compared to healthy human. And 571 genes were differently expressed above 2-fold level in aneurysmal tissue from intracranial aneurysm patients compared to healthy human intracranial arteries. Function analysis was confirmed from upregulated genes and downregulated genes, and among these genes, there were several genes invovled in G protein signal transduction pathway. There were 3 genes directionally expressed (RA831 upregulated and ARHGAP8, CENTG2 downregulated) both in PBMCs and aneurysm tissues from intracranial aneurysm patients. Conclusions The methodologies of genechip will provide a new powerful approach to help identify the molecular mechanisms of intracranial aneurysm. G protein signal transduction pathway may be the possible mechanism for the pathogenesis of intracranial aneurysms in Chinese.