运筹学学报
運籌學學報
운주학학보
OR TRANSACTIONS
2009年
1期
72-76
,共5页
运筹学%图%网络%最小性%宽直径
運籌學%圖%網絡%最小性%寬直徑
운주학%도%망락%최소성%관직경
Operations research%graph%network%connectivity%wide diameter
设k为正整数,G是简单k连通图.图G的k宽直径,dk(G),是指最小的整数ι使得对任意两不同顶点x,y∈V(G),都存在k条长至多为ι的内部不交的连接x和y的路.用C(n,t)表示在圈Gn上增加t条边所得的图.定义h(n,t):min{d2(C(n,t))}.本文给出了h(n,2)=[n/2].而且,给出了当t较大时h(n,t)的界.
設k為正整數,G是簡單k連通圖.圖G的k寬直徑,dk(G),是指最小的整數ι使得對任意兩不同頂點x,y∈V(G),都存在k條長至多為ι的內部不交的連接x和y的路.用C(n,t)錶示在圈Gn上增加t條邊所得的圖.定義h(n,t):min{d2(C(n,t))}.本文給齣瞭h(n,2)=[n/2].而且,給齣瞭噹t較大時h(n,t)的界.
설k위정정수,G시간단k련통도.도G적k관직경,dk(G),시지최소적정수ι사득대임의량불동정점x,y∈V(G),도존재k조장지다위ι적내부불교적련접x화y적로.용C(n,t)표시재권Gn상증가t조변소득적도.정의h(n,t):min{d2(C(n,t))}.본문급출료h(n,2)=[n/2].이차,급출료당t교대시h(n,t)적계.
Let k be a positive integer and G be a k-connected simple graph. The k-wide diameter of graph G, dk(G), is the minimum integer ι such that for any two distinct vertices x, y ∈ V(G), there are k (internally) disjoint paths with lengths at most l between x and y. Let C(n, t) be the resulting graph by adding t edges to cycle Cn. Define h(n,t) =- min{d2(C(n,t))}. In this paper, we compute h(n,t) and obtain thai h(n, 2) = [n/2] Furthermore, we give the bounds for h(n,t) when t ≥3.