稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2009年
z2期
635-639
,共5页
傅迎庆%周锋%高阳%杨德明%李南翔
傅迎慶%週鋒%高暘%楊德明%李南翔
부영경%주봉%고양%양덕명%리남상
准晶%超音速火焰喷涂%摩擦%磨损%润湿
準晶%超音速火燄噴塗%摩抆%磨損%潤濕
준정%초음속화염분도%마찰%마손%윤습
quasicrystal%high velocity oxy-fuel spray%friction%wear%wetting
以普通45#钢为基体,分别以FeAl晶体粉末和Al_(65)Cu_(20)Cr_(15)准晶粉末为热喷涂材料,采用超音速火焰喷涂(HVOF)方法制备涂层.使用金相显微镜和接触角测量仪分别对两种涂层的扁平粒子形态和表面润湿性进行表征,利用X射线衍射仪对准晶涂层的相结构进行分析.分别使用MH-6维氏硬度仪和MMW-1立式万能摩擦磨损试验机测量涂层的显微硬度HV和摩擦系数及磨损失重.结果表明:喷涂准晶涂层与原始粉末的相组成基本相同,都包括主相二十面体准晶I-Al_(65)Cu_(24)Cr_(11),和另外3种含量极少的晶体相,即θ-Al_(13)Cr_2(即Al_(83)Cu_4Cr_(13))、α-Al_(69)Cu_(18)Cr_(13)和ε-Al_2Cu_3;但是与原始准晶粉末相比,HVOF涂层中准晶相I-Al_(65)Cu_(24)Cr_(11)的体积含量相对减少,而另外3种晶体相含量相对增加.相同试验条件下,同FeAl为代表的常规金属晶体涂层相比,超音速火焰喷涂Al-Cu-Cr准晶涂层具有更低的摩擦系数和磨损量,而且对蒸馏水具有更大的接触角,这说明后者的减摩耐磨性能和对蒸馏水的不粘性优于前者.
以普通45#鋼為基體,分彆以FeAl晶體粉末和Al_(65)Cu_(20)Cr_(15)準晶粉末為熱噴塗材料,採用超音速火燄噴塗(HVOF)方法製備塗層.使用金相顯微鏡和接觸角測量儀分彆對兩種塗層的扁平粒子形態和錶麵潤濕性進行錶徵,利用X射線衍射儀對準晶塗層的相結構進行分析.分彆使用MH-6維氏硬度儀和MMW-1立式萬能摩抆磨損試驗機測量塗層的顯微硬度HV和摩抆繫數及磨損失重.結果錶明:噴塗準晶塗層與原始粉末的相組成基本相同,都包括主相二十麵體準晶I-Al_(65)Cu_(24)Cr_(11),和另外3種含量極少的晶體相,即θ-Al_(13)Cr_2(即Al_(83)Cu_4Cr_(13))、α-Al_(69)Cu_(18)Cr_(13)和ε-Al_2Cu_3;但是與原始準晶粉末相比,HVOF塗層中準晶相I-Al_(65)Cu_(24)Cr_(11)的體積含量相對減少,而另外3種晶體相含量相對增加.相同試驗條件下,同FeAl為代錶的常規金屬晶體塗層相比,超音速火燄噴塗Al-Cu-Cr準晶塗層具有更低的摩抆繫數和磨損量,而且對蒸餾水具有更大的接觸角,這說明後者的減摩耐磨性能和對蒸餾水的不粘性優于前者.
이보통45#강위기체,분별이FeAl정체분말화Al_(65)Cu_(20)Cr_(15)준정분말위열분도재료,채용초음속화염분도(HVOF)방법제비도층.사용금상현미경화접촉각측량의분별대량충도층적편평입자형태화표면윤습성진행표정,이용X사선연사의대준정도층적상결구진행분석.분별사용MH-6유씨경도의화MMW-1입식만능마찰마손시험궤측량도층적현미경도HV화마찰계수급마손실중.결과표명:분도준정도층여원시분말적상조성기본상동,도포괄주상이십면체준정I-Al_(65)Cu_(24)Cr_(11),화령외3충함량겁소적정체상,즉θ-Al_(13)Cr_2(즉Al_(83)Cu_4Cr_(13))、α-Al_(69)Cu_(18)Cr_(13)화ε-Al_2Cu_3;단시여원시준정분말상비,HVOF도층중준정상I-Al_(65)Cu_(24)Cr_(11)적체적함량상대감소,이령외3충정체상함량상대증가.상동시험조건하,동FeAl위대표적상규금속정체도층상비,초음속화염분도Al-Cu-Cr준정도층구유경저적마찰계수화마손량,이차대증류수구유경대적접촉각,저설명후자적감마내마성능화대증류수적불점성우우전자.
The FeAl crystalline and Al-Cu-Cr quasicrystalline (QC) powders were deposited on AISI 1045 steel substrate by high-velocity oxy-fuel (HVOF) spraying, respectively. The morphology of flattening splats and surface wettability of as-sprayed coatings were characterized by metallographic microscope and contact angle tester. The phase composition of the QC powder and coating were examined by X-ray Diffraction. The microhardness tests were performed using MH-6 micro-hardness tester. The dry friction coefficient and wear loss of the coating were tested by MMW-1 friction wear testing machine. The XRD results showed that the original QC powder and its as-sprayed coating contained a predominated icosahedral QC phase I-Al_(65)Cu_(24)Cr_(11) and three minor crystalline phases, including θ-Al_(13)Cr_2 (i.e. Al_(83)Cu_4Cr_(13)), α-Al_(69)Cu_(18)Cr_(13) and ε-Al_2Cu_3. A qualitative analysis on the XRD patterns indicated that the volume fraction of any crystalline phase (α, θ or ε) in the coating was higher than that in the powder, while the content of the QC I-phase was lower than the latter. Under identical testing conditions, compared with conventional metallic crystalline coatings represented by FeAl, the HVOF Al-Cu-Cr QC coating had lower dry friction coeffficient and wear loss, and higher wetting angle to distilled water. And these results showed that the Al-Cu-Cr QC coating had better antifriction and wear-resisting properties than FeAl crystalline coating, and had an excellent non-sticking properties to distilled water.