半导体学报
半導體學報
반도체학보
CHINESE JOURNAL OF SEMICONDUCTORS
2008年
6期
1088-1093
,共6页
丁海涛%杨振川%张美丽%闫桂珍
丁海濤%楊振川%張美麗%閆桂珍
정해도%양진천%장미려%염계진
footing效应%硅/玻璃键合%反应离子深刻蚀
footing效應%硅/玻璃鍵閤%反應離子深刻蝕
footing효응%규/파리건합%반응리자심각식
footing effect%silicon on glass%deep reactive ion etching.
针对反应离子深刻蚀中硅/玻璃键合结构的footing效应问题,用实验方法进行了研究.通过2~4和0.01~0.03Ω·cm两种不同电导率的硅结构过刻蚀的对比,以及对50,20和5μm三组不同间隙高度的器件结构过刻蚀的对比,揭示了单晶硅结构的电导率及器件结构和玻璃衬底间隙高度对footing效应的影响.实验结果显示电导率为2~4Ω·cm的硅结构比电导率为0.01~0.03Ω·cm的硅结构footing效应严重;硅结构和玻璃衬底的间隙为5μm的比间隙为20和50μm的footing效应严重, 对这一现象的理论分析认为,被刻蚀的硅的电导率越高, 硅结构与玻璃衬底的间隙越大,footing效应越不明显.本文中不同电导率和不同间隙高度的实验对比结果可以为硅微传感器材料类型的选取和器件的优化设计提供参考.
針對反應離子深刻蝕中硅/玻璃鍵閤結構的footing效應問題,用實驗方法進行瞭研究.通過2~4和0.01~0.03Ω·cm兩種不同電導率的硅結構過刻蝕的對比,以及對50,20和5μm三組不同間隙高度的器件結構過刻蝕的對比,揭示瞭單晶硅結構的電導率及器件結構和玻璃襯底間隙高度對footing效應的影響.實驗結果顯示電導率為2~4Ω·cm的硅結構比電導率為0.01~0.03Ω·cm的硅結構footing效應嚴重;硅結構和玻璃襯底的間隙為5μm的比間隙為20和50μm的footing效應嚴重, 對這一現象的理論分析認為,被刻蝕的硅的電導率越高, 硅結構與玻璃襯底的間隙越大,footing效應越不明顯.本文中不同電導率和不同間隙高度的實驗對比結果可以為硅微傳感器材料類型的選取和器件的優化設計提供參攷.
침대반응리자심각식중규/파리건합결구적footing효응문제,용실험방법진행료연구.통과2~4화0.01~0.03Ω·cm량충불동전도솔적규결구과각식적대비,이급대50,20화5μm삼조불동간극고도적기건결구과각식적대비,게시료단정규결구적전도솔급기건결구화파리츤저간극고도대footing효응적영향.실험결과현시전도솔위2~4Ω·cm적규결구비전도솔위0.01~0.03Ω·cm적규결구footing효응엄중;규결구화파리츤저적간극위5μm적비간극위20화50μm적footing효응엄중, 대저일현상적이론분석인위,피각식적규적전도솔월고, 규결구여파리츤저적간극월대,footing효응월불명현.본문중불동전도솔화불동간극고도적실험대비결과가이위규미전감기재료류형적선취화기건적우화설계제공삼고.
This paper experimentally studies the effects of the conductivity of a silicon wafer and the gap height between silicon structures and glass substrate on the footing effect for silicon on glass (SOG) structures in the deep reactive ion etching (DRIE) process. Experiments with gap heights of 5,20, and 50μm were carried out for performance comparison of the footing effect. Also,two kinds of silicon wafers with resistivity of 2~4 and 0.01~0.03Ω·cm were used for the ex- ploration. The results show that structures with resistivity of 0.01~0.03Ω · cm have better topography than those with resistivity of 2~4Ω · cm; and structures with 50μm-high gaps between silicon structures and glass substrate suffer some-what less of a footing effect than those with 20μm-high gaps, and much less than those with 5μm-high gaps. Our theoretical analysis indicates that either the higher conductivity of the silicon wafer or a larger gap height between silicon structures and glass substrate can suppress footing effects. The results can contribute to the choice of silicon type and optimum design for many microsensors.