数学研究
數學研究
수학연구
JOURNAL OF MATHEMATICAL STUDY
2011年
4期
356-360
,共5页
邻点可区别全染色%邻点可区别全色数%折叠立方体%全染色
鄰點可區彆全染色%鄰點可區彆全色數%摺疊立方體%全染色
린점가구별전염색%린점가구별전색수%절첩립방체%전염색
Adjacent vertex-distinguishing total coloring%Adjacent vertex-distinguishing total chromatic number%Folded hypercubes%Total coloring
简单图G的全染色是指对G的点和边都进行染色.称全染色为正常的如果没有相邻或关联元素染同一种颜色.简单图G=(VE)的正常全染色^称为它的邻点可区别全染色如果对任意两个相邻顶点u、v,有H(u)≠H(v),其中H(u)={(u))U{^(uw)|uw∈E(G))而H(v)={h(u)}U{h(vx)|vx∈E(G)).G的邻点可区别全染色所需最少颜色数称为G邻点可区别全色数,记为Xat(G).本文考虑折叠立方体图FQn的邻点可区别全色数,证明了对任意n≥2,有Xat(FQn)=n+3.
簡單圖G的全染色是指對G的點和邊都進行染色.稱全染色為正常的如果沒有相鄰或關聯元素染同一種顏色.簡單圖G=(VE)的正常全染色^稱為它的鄰點可區彆全染色如果對任意兩箇相鄰頂點u、v,有H(u)≠H(v),其中H(u)={(u))U{^(uw)|uw∈E(G))而H(v)={h(u)}U{h(vx)|vx∈E(G)).G的鄰點可區彆全染色所需最少顏色數稱為G鄰點可區彆全色數,記為Xat(G).本文攷慮摺疊立方體圖FQn的鄰點可區彆全色數,證明瞭對任意n≥2,有Xat(FQn)=n+3.
간단도G적전염색시지대G적점화변도진행염색.칭전염색위정상적여과몰유상린혹관련원소염동일충안색.간단도G=(VE)적정상전염색^칭위타적린점가구별전염색여과대임의량개상린정점u、v,유H(u)≠H(v),기중H(u)={(u))U{^(uw)|uw∈E(G))이H(v)={h(u)}U{h(vx)|vx∈E(G)).G적린점가구별전염색소수최소안색수칭위G린점가구별전색수,기위Xat(G).본문고필절첩립방체도FQn적린점가구별전색수,증명료대임의n≥2,유Xat(FQn)=n+3.
A total coloring of a simple graph G is a coloring of both edges and vertices. A total coloring is proper if no two adjacent or incident elements receive the same color. An adjacent vertex-distinguishing total coloring h of a simple graph G = (Y,E) is a proper total coloring of G such that H(u)≠ H(v) for any two adjacent vertices u and v, where H(u) = {h(u)} U) (h(uw)|uw ∈ E(G)} and H(v) = {h(v)} U {h(vx)[vx ∈ E(G)}. The minimum number of colors required for an adjacent vertex-distinguishing total coloring of G is called the adjacent vertex- distinguishing total chromatic number of G and denoted by Xat(G). In this paper, we consider the adjacent vertex-distinguishing total chromatic number of the folded hypercubes FQn and prove that Xat(FQn) = n + 3 for n ≥ 2.