机器人
機器人
궤기인
ROBOT
2010年
1期
55-60
,共6页
无人驾驶车辆%全局定位%地图匹配%ICP算法%UKF数据融合
無人駕駛車輛%全跼定位%地圖匹配%ICP算法%UKF數據融閤
무인가사차량%전국정위%지도필배%ICP산법%UKF수거융합
driverless vehicle%global localization%map matching%ICP (iterative closest point) algorithm%UKF (unscented Kalman filter) data fusion
针对室外环境特点,设计将摄像机安装在车辆底部,提出一种基于地面特征点的地图匹配法以获取车辆定位信息.定位方法分为两步:(1)手动控制车辆在环境中运行,保存RTK(real-time kinematic)-GPS、里程计和摄像机等传感器数据,离线自动创建地面特征点地图,并利用一种特殊的地图组织方式来提高地图搜索和匹配效率;(2)利用地图匹配对车辆进行定位,其中采用一种基于M估计加权ICP(iterative closest point)算法的特征点对应和匹配参数求解方法,并进一步采用UKF(unscented Kalman filter)算法融合地图匹配和航位推算的结果以提高定位鲁棒性.实验结果表明了该方法的有效性.
針對室外環境特點,設計將攝像機安裝在車輛底部,提齣一種基于地麵特徵點的地圖匹配法以穫取車輛定位信息.定位方法分為兩步:(1)手動控製車輛在環境中運行,保存RTK(real-time kinematic)-GPS、裏程計和攝像機等傳感器數據,離線自動創建地麵特徵點地圖,併利用一種特殊的地圖組織方式來提高地圖搜索和匹配效率;(2)利用地圖匹配對車輛進行定位,其中採用一種基于M估計加權ICP(iterative closest point)算法的特徵點對應和匹配參數求解方法,併進一步採用UKF(unscented Kalman filter)算法融閤地圖匹配和航位推算的結果以提高定位魯棒性.實驗結果錶明瞭該方法的有效性.
침대실외배경특점,설계장섭상궤안장재차량저부,제출일충기우지면특정점적지도필배법이획취차량정위신식.정위방법분위량보:(1)수동공제차량재배경중운행,보존RTK(real-time kinematic)-GPS、리정계화섭상궤등전감기수거,리선자동창건지면특정점지도,병이용일충특수적지도조직방식래제고지도수색화필배효솔;(2)이용지도필배대차량진행정위,기중채용일충기우M고계가권ICP(iterative closest point)산법적특정점대응화필배삼수구해방법,병진일보채용UKF(unscented Kalman filter)산법융합지도필배화항위추산적결과이제고정위로봉성.실험결과표명료해방법적유효성.
Vehicle localization is achieved by a ground feature points based map matching approach, in which a camera is fixed downward on the bottom of the vehicle according to the outdoor environmental conditions. The proposed approach includes two steps: (1) a vehicle is manually controlled to move in an environment, recording sensor data from RTK (real-time kinematic)-GPS, odometry and camera to produce a ground feature point map automatically in an off-line manner. A specialmap organization is used to increase the efficiency of map search and matching. (2) vehicle localization is realized by map matching method, in which a M-estimator weighted ICP (iterative closest point) algorithm is utilized to match feature points and compute matching parameters. Furthermore, map matching result is fused with dead-reckoning by UKF (unscented Kalman filter) to achieve higher robustness. Experimental results demonstrate the effectiveness of the proposed approach.