分析试验室
分析試驗室
분석시험실
ANALYTICAL LABORATORY
2010年
3期
110-113
,共4页
双水相萃取%铁%三乙醇胺%K_2HPO_4%火焰原子吸收光谱法
雙水相萃取%鐵%三乙醇胺%K_2HPO_4%火燄原子吸收光譜法
쌍수상췌취%철%삼을순알%K_2HPO_4%화염원자흡수광보법
Aqueous two-phase extraction%Iron%Triethanolamine%Dipotassium hydrogen phosphate%Flame atomic absorption spectrometry
研究了三乙醇胺(TEA)水溶液在电解质作用下的相分离及其通过形成TEA-Fe~(3+)配合物实现三乙醇胺相对Fe~(3+)的萃取,萃取过程将萃取剂和萃取溶剂合二为一. 同时还讨论了表面张力、溶液提升率对火焰原子吸收光谱法(FAAS)测定三乙醇胺相中铁的影响. 建立了TEA-K_2HPO_4-H_2O双水相萃取、FAAS测定铁的新方法:在试液中加入1 mL三乙醇胺(1+1)和5 g K_2HPO_4后以水定容为10 mL,离心分离后用FAAS测定三乙醇胺相中的铁. 线性范围20~240 μg/L,检出限6.1 μg/L (S/N=3), 已用于自来水和井水中铁的萃取.
研究瞭三乙醇胺(TEA)水溶液在電解質作用下的相分離及其通過形成TEA-Fe~(3+)配閤物實現三乙醇胺相對Fe~(3+)的萃取,萃取過程將萃取劑和萃取溶劑閤二為一. 同時還討論瞭錶麵張力、溶液提升率對火燄原子吸收光譜法(FAAS)測定三乙醇胺相中鐵的影響. 建立瞭TEA-K_2HPO_4-H_2O雙水相萃取、FAAS測定鐵的新方法:在試液中加入1 mL三乙醇胺(1+1)和5 g K_2HPO_4後以水定容為10 mL,離心分離後用FAAS測定三乙醇胺相中的鐵. 線性範圍20~240 μg/L,檢齣限6.1 μg/L (S/N=3), 已用于自來水和井水中鐵的萃取.
연구료삼을순알(TEA)수용액재전해질작용하적상분리급기통과형성TEA-Fe~(3+)배합물실현삼을순알상대Fe~(3+)적췌취,췌취과정장췌취제화췌취용제합이위일. 동시환토론료표면장력、용액제승솔대화염원자흡수광보법(FAAS)측정삼을순알상중철적영향. 건립료TEA-K_2HPO_4-H_2O쌍수상췌취、FAAS측정철적신방법:재시액중가입1 mL삼을순알(1+1)화5 g K_2HPO_4후이수정용위10 mL,리심분리후용FAAS측정삼을순알상중적철. 선성범위20~240 μg/L,검출한6.1 μg/L (S/N=3), 이용우자래수화정수중철적췌취.
The phase separation of triethanolamine (TEA) solution in the presence of electrolytes and then extraction of iron in the solution into TEA-rich phase based on the formation of TEA-Fe~(3+)complex were developed. The triethanolamine was served as both extractant and extraction solvent in the extraction. The effect of surface tension and uptake rate on the determination of iron in TEA-rich phase by flame atomic absorption spectrometry (FAAS) was discussed at the same time. The suitable system for iron extraction was TEA-K_2HPO_4-H_2O, in which iron mainly partitioned into the TEA-rich phase. Phase systems were prepared in a 10 mL graduated centrifuge tube by adding 1 mL of triethanolamine (1+1) and 5 g of dipotassium hydrogen phosphate, then being diluted to 10 mL with doubly-distilled water and centrifuged to facilitate phase separation. Linear calibration graph was obtained in the concentration range of 20~240 μg/L with a detection limit of 6.1 μg/L (S/N=3). The method was applied to extraction of iron in tap water and well water with satisfactory results.