深圳大学学报(理工版)
深圳大學學報(理工版)
심수대학학보(리공판)
JOURNAL OF SHENZHEN UNIVERSITY (SCIENCE & ENGINEERING)
2011年
4期
283-294
,共12页
最大熵原理%最合理概率分配%热力学关系%热场%热噪声相干态%热噪声压缩态%量子光学%量子信息学%生物光子学
最大熵原理%最閤理概率分配%熱力學關繫%熱場%熱譟聲相榦態%熱譟聲壓縮態%量子光學%量子信息學%生物光子學
최대적원리%최합리개솔분배%열역학관계%열장%열조성상간태%열조성압축태%양자광학%양자신식학%생물광자학
maximum entropy principle%the most reasonable probability assignment%thermodynamical relations%thermal field%coherent state with thermal noise%squeezed state with thermal noise%quantum optics%quantum informatics%biophotonics
Jaynes E T的最大熵原理指出如何从随机变量的测量数据推导出最合理概率分布.该原理最直接的应用是给出了所有热力学关系,这是对具有能量作为单一测量值的经典系统进行熵的最大化处理的结果.本研究将最大熵原理推广到量子力学系统,揭示辐射场的量子统计性质.结果显示,随着可测量力学量类别的增加,依次自动引出混沌态、相干态和压缩态等一系列辐射场态.值得关注的是运用该方法,所有辐射场态对热噪声的依赖性可被定量描述.该研究结果有望用于量子光学、量子信息学、生物光子学及相关交叉学科领域.
Jaynes E T的最大熵原理指齣如何從隨機變量的測量數據推導齣最閤理概率分佈.該原理最直接的應用是給齣瞭所有熱力學關繫,這是對具有能量作為單一測量值的經典繫統進行熵的最大化處理的結果.本研究將最大熵原理推廣到量子力學繫統,揭示輻射場的量子統計性質.結果顯示,隨著可測量力學量類彆的增加,依次自動引齣混沌態、相榦態和壓縮態等一繫列輻射場態.值得關註的是運用該方法,所有輻射場態對熱譟聲的依賴性可被定量描述.該研究結果有望用于量子光學、量子信息學、生物光子學及相關交扠學科領域.
Jaynes E T적최대적원리지출여하종수궤변량적측량수거추도출최합리개솔분포.해원리최직접적응용시급출료소유열역학관계,저시대구유능량작위단일측량치적경전계통진행적적최대화처리적결과.본연구장최대적원리추엄도양자역학계통,게시복사장적양자통계성질.결과현시,수착가측량역학량유별적증가,의차자동인출혼돈태、상간태화압축태등일계렬복사장태.치득관주적시운용해방법,소유복사장태대열조성적의뢰성가피정량묘술.해연구결과유망용우양자광학、양자신식학、생물광자학급상관교차학과영역.
The maximum entropy principle discovered by Jaynes E T governs a search of the most reasonable probability assignment of stochastic variable,based on the measured data.One of the simplest applications of this principle lies in that all the thermodynamical relations are derived from the maximizing entropy of the system with energy as a single measured value.The maximum entropy principle is used then for the radiation field as a quantum system.Our results show that with an increase of the number of measurable quantities,the thermal field,the coherent states as well as the squeezed states are automatically introduced in turn; in particular,the dependence of all the properties of these radiation fields on the thermal noise is formulated quantitatively.The fundamental results obtained in this paper are expected to provide a basis for applications of the maximum entropy principle in some fields,such as quantum optics,quantum informatics,biophotonics,and related interdisciplinary science.