四川大学学报(自然科学版)
四川大學學報(自然科學版)
사천대학학보(자연과학판)
JOURNAL OF SICHUAN UNIVERSITY
2009年
6期
1737-1742
,共6页
尹凯%黄传连%周玲玲%伍冬兰%谢安东
尹凱%黃傳連%週玲玲%伍鼕蘭%謝安東
윤개%황전련%주령령%오동란%사안동
分子结构与势能函数%激发态%Murrell-Sorbie函数
分子結構與勢能函數%激髮態%Murrell-Sorbie函數
분자결구여세능함수%격발태%Murrell-Sorbie함수
molecular structure and potential function%excited state%Murrell-Sorbie function
使用SAC/SAC-CI方法,利用D95++**、6-311++g**以及cc-PVTZ等基组,对HD分子的基态(X~1∑_g~+)、第二激发态(B~1∑_u~+)和第三激发态(C~1Π_u)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X~1∑~+_g)、SAC-CI的GSUM方法对激发态(B~1∑_u~+)和(C~1Π_u)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X~1∑_g~+)、第二激发态(B~1∑_u~+)和第三激发态(C~1Π_u)相对应的光谱常数(B_e,α_e,ω_e 和ω_eχ_e),结果与实验数据基本吻合.
使用SAC/SAC-CI方法,利用D95++**、6-311++g**以及cc-PVTZ等基組,對HD分子的基態(X~1∑_g~+)、第二激髮態(B~1∑_u~+)和第三激髮態(C~1Π_u)的平衡結構和諧振頻率進行瞭優化計算.通過對3箇基組的計算結果的比較,得齣瞭cc-PVTZ基組為三箇基組中的最優基組的結論;使用cc-PVTZ基組,利用SAC的GSUM(Group Sum of Operators)方法對基態(X~1∑~+_g)、SAC-CI的GSUM方法對激髮態(B~1∑_u~+)和(C~1Π_u)進行單點能掃描計算,用正規方程組擬閤Murrell-Sorbie函數,得到瞭相應電子態的完整勢能函數;從得到的勢能函數計算瞭與基態(X~1∑_g~+)、第二激髮態(B~1∑_u~+)和第三激髮態(C~1Π_u)相對應的光譜常數(B_e,α_e,ω_e 和ω_eχ_e),結果與實驗數據基本吻閤.
사용SAC/SAC-CI방법,이용D95++**、6-311++g**이급cc-PVTZ등기조,대HD분자적기태(X~1∑_g~+)、제이격발태(B~1∑_u~+)화제삼격발태(C~1Π_u)적평형결구화해진빈솔진행료우화계산.통과대3개기조적계산결과적비교,득출료cc-PVTZ기조위삼개기조중적최우기조적결론;사용cc-PVTZ기조,이용SAC적GSUM(Group Sum of Operators)방법대기태(X~1∑~+_g)、SAC-CI적GSUM방법대격발태(B~1∑_u~+)화(C~1Π_u)진행단점능소묘계산,용정규방정조의합Murrell-Sorbie함수,득도료상응전자태적완정세능함수;종득도적세능함수계산료여기태(X~1∑_g~+)、제이격발태(B~1∑_u~+)화제삼격발태(C~1Π_u)상대응적광보상수(B_e,α_e,ω_e 화ω_eχ_e),결과여실험수거기본문합.
The energies, equilibrium geometries and harmonic frequencies of the three electronic states (the ground state X~1∑_g~+, the second excited state B~1∑_u~+ and the third excited state C~1Π_u) of HD molecule have been calculated using the GSUM (Group Sum of Operators) method of SAC/ SAC-CI with the basis sets D95++**, 6-311++g** and cc-PVTZ. Comparing among the above-mentioned three basis sets, the conclusion is gained that the basis set cc-PVTZ is the most suitable for the energy calculation of HD molecule. The whole potential curves for these three electronic states are further scanned using SAC/cc-PVTZ method for the ground state and SAC-CI/cc-PVTZ methods for the excited states, then have a least square fitted to Murrell-Sorbie function, and last the spectroscopy constants (B_e, α_e, ω_e , and ω_eχ_e) are calculated, which are in good agreement with the experimental data. It is believed that Murrell-Sorbie function form and SAC/ SAC-CI method are suitable not only for the ground state, but the low-lying excited states as well.