光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2010年
5期
1248-1251
,共4页
邬文锦%王红武%陈绍江%郭婷婷%王守觉%苏谦%孙明%安冬
鄔文錦%王紅武%陳紹江%郭婷婷%王守覺%囌謙%孫明%安鼕
오문금%왕홍무%진소강%곽정정%왕수각%소겸%손명%안동
近红外光谱%仿生模式识别%玉米商品籽粒%品种鉴别
近紅外光譜%倣生模式識彆%玉米商品籽粒%品種鑒彆
근홍외광보%방생모식식별%옥미상품자립%품충감별
Near infrared spectral(NIRS)%Biomimetic pattern recognition(BPR)%Commerical corn seed%Discrimination
现有的玉米种子品种鉴别方法检测时间长,费用高,不易大批量快速鉴别.提出了一种基于近红外光谱数据快速鉴别商品玉米品种的新方法.先使用傅里叶变换近红外光谱仪获得从4 000到12 000 cm-1波段范围的37个商品玉米品种籽粒的漫反射光谱数据.对原始光谱进行矢量归一化预处理以消除噪声干扰,为了找到玉米品种籽粒的光谱特征波段,提出一种基于标准差的方法,进而对寻找到的玉米籽粒特征波段光谱做主成分分析(PCA),取能反映玉米品种99.98%光谱信息的前10个主成分.最后使用仿牛模式识别(BPR)方法建它了37个玉米晶种鉴别模型,对于每个品种的25个样本,随机挑选15个样本作为训练样本,其余10个样本作为第一测试集,其他晶种共900个样本作为第二测试集.该鉴别模型对于37个玉米品种的平均正确识别率为94.3%.该方法的进一步研究有利于建立以近红外光谱为基础的物理指纹品种鉴别技术.
現有的玉米種子品種鑒彆方法檢測時間長,費用高,不易大批量快速鑒彆.提齣瞭一種基于近紅外光譜數據快速鑒彆商品玉米品種的新方法.先使用傅裏葉變換近紅外光譜儀穫得從4 000到12 000 cm-1波段範圍的37箇商品玉米品種籽粒的漫反射光譜數據.對原始光譜進行矢量歸一化預處理以消除譟聲榦擾,為瞭找到玉米品種籽粒的光譜特徵波段,提齣一種基于標準差的方法,進而對尋找到的玉米籽粒特徵波段光譜做主成分分析(PCA),取能反映玉米品種99.98%光譜信息的前10箇主成分.最後使用倣牛模式識彆(BPR)方法建它瞭37箇玉米晶種鑒彆模型,對于每箇品種的25箇樣本,隨機挑選15箇樣本作為訓練樣本,其餘10箇樣本作為第一測試集,其他晶種共900箇樣本作為第二測試集.該鑒彆模型對于37箇玉米品種的平均正確識彆率為94.3%.該方法的進一步研究有利于建立以近紅外光譜為基礎的物理指紋品種鑒彆技術.
현유적옥미충자품충감별방법검측시간장,비용고,불역대비량쾌속감별.제출료일충기우근홍외광보수거쾌속감별상품옥미품충적신방법.선사용부리협변환근홍외광보의획득종4 000도12 000 cm-1파단범위적37개상품옥미품충자립적만반사광보수거.대원시광보진행시량귀일화예처리이소제조성간우,위료조도옥미품충자립적광보특정파단,제출일충기우표준차적방법,진이대심조도적옥미자립특정파단광보주주성분분석(PCA),취능반영옥미품충99.98%광보신식적전10개주성분.최후사용방우모식식별(BPR)방법건타료37개옥미정충감별모형,대우매개품충적25개양본,수궤도선15개양본작위훈련양본,기여10개양본작위제일측시집,기타정충공900개양본작위제이측시집.해감별모형대우37개옥미품충적평균정학식별솔위94.3%.해방법적진일보연구유리우건립이근홍외광보위기출적물리지문품충감별기술.
The existing methods for the discrimination of varieties of commodity corn seed are unable to process hatch data and speed up identification,and very time consuming and costly.The present paper developed a new approach to the fast discrimination of varieties of commodity corn by means of near infrared spectral data.Firstly,the experiment obtained spectral data of 37 varieties of commodity corn seed with the Fourier transform mear infrared spectrometer in the wavenumber range from 4 000 to 12 000 cm-1.Secondly,the original data were pretreated using statistics method of normalization in order to eliminate noise and improve the efficiency of models.Thirdly,a new way based on sample standard deviation was used to select the characteristic spectral regions,and it can search very different wavenumhers among all wavenumbers and reduce the amount of data in part.Fourthly,principal component analysis(PCA) was used to compress spectral data into several variables,and the cumulate reliabilities of the first ten components were more than 99.98%.Finally,according to the first ten components,recognition models werc cstablished based on BPR For every 25 samples in each variety,15 samples were randomly selected as the training set.The remaining 10 samples of the same variety were used as the first testing set,and all the 900.samples of the other varieties were used as the second testing set.Calculation results showed that the average correctness recognition rate of the 37 varieties of corn seed was 94.3%.Testing results indicate that the discrimination method had higher precision than the discrimination of various kinds of commodity corn seed.In short,it is feasible to discriminate various varieties of commodity corn seed based on near infrared spectroscopy and BPR.