湘潭大学自然科学学报
湘潭大學自然科學學報
상담대학자연과학학보
NATURAL SCIENCE JOURNAL OF XIANGTAN UNIVERSITY
2004年
1期
148-154
,共7页
线对称性时不变系统%梯度流%稳定性%优化
線對稱性時不變繫統%梯度流%穩定性%優化
선대칭성시불변계통%제도류%은정성%우화
Linear time-invariant state space symmetric system%model reduction%stability%nondegenerate matrix%gradient flow%optimization
研究用一个低价隐定连续线对称性时不变系统去近似一个高阶隐定连续线对称性时不变系统以使它们之间的L2-范数误差最小化.到目前为止,这一问题是否有解还没有定论.该文试图寻找一个低阶隐定连续线对称性时不变系统,其与给定的高阶隐定连续线对称性时不变系统的L2-范数误差可与最优误差值充分接近.为此,构造一个约束最小化问题并证明这个问题有全局最小解.作者设计一个梯度流算法来求解这个约束最小化问题,给出一个数值例子显示本方法的有效性.
研究用一箇低價隱定連續線對稱性時不變繫統去近似一箇高階隱定連續線對稱性時不變繫統以使它們之間的L2-範數誤差最小化.到目前為止,這一問題是否有解還沒有定論.該文試圖尋找一箇低階隱定連續線對稱性時不變繫統,其與給定的高階隱定連續線對稱性時不變繫統的L2-範數誤差可與最優誤差值充分接近.為此,構造一箇約束最小化問題併證明這箇問題有全跼最小解.作者設計一箇梯度流算法來求解這箇約束最小化問題,給齣一箇數值例子顯示本方法的有效性.
연구용일개저개은정련속선대칭성시불변계통거근사일개고계은정련속선대칭성시불변계통이사타문지간적L2-범수오차최소화.도목전위지,저일문제시부유해환몰유정론.해문시도심조일개저계은정련속선대칭성시불변계통,기여급정적고계은정련속선대칭성시불변계통적L2-범수오차가여최우오차치충분접근.위차,구조일개약속최소화문제병증명저개문제유전국최소해.작자설계일개제도류산법래구해저개약속최소화문제,급출일개수치례자현시본방법적유효성.
This paper deals with the problem of finding a lower-order linear continuous time-invariant stable state space symmetric system to approximate a given higher-order linear continuous time-invariant stable state space symmetric system so that the L2 norm of the model mismatch is minimized. It is still an open problem whether this problem has a solution or not. This paper attempts to find a lower-order state space symmetric model whose model reduction cost differs from the optimal model reduction cost by a prescribed precision. It is shown that this task can be tackled by solving a smooth constrained optimization problem which is guaranteed to admit a global minimum. A gradient flow algorithm is proposed to solve the latter problem. A numerical example is presented to demonstrate the effectiveness of this approach.