吉林大学学报(理学版)
吉林大學學報(理學版)
길림대학학보(이학판)
JOURNAL OF JILIN UNIVERSITY(SCIENCE EDITION)
2010年
1期
15-20
,共6页
复射影空间%拟全实%极小子流形%谱几何%特征值不等式
複射影空間%擬全實%極小子流形%譜幾何%特徵值不等式
복사영공간%의전실%겁소자류형%보궤하%특정치불등식
complex projective space%quasi-totally real%minimal submanifolds%spactral geometry%eigenvalue inequalities
研究复射影空间中拟全实极小子流形的谱几何, 利用活动标架法并通过计算平均曲率向量的Laplacian, 建立了仅与子流形内蕴几何量有关的特征值不等式, 将相关结果推广到复射影空间中的一般子流形上, 并获得了拟全实极小子流形存在u阶浸入的充要条件.
研究複射影空間中擬全實極小子流形的譜幾何, 利用活動標架法併通過計算平均麯率嚮量的Laplacian, 建立瞭僅與子流形內蘊幾何量有關的特徵值不等式, 將相關結果推廣到複射影空間中的一般子流形上, 併穫得瞭擬全實極小子流形存在u階浸入的充要條件.
연구복사영공간중의전실겁소자류형적보궤하, 이용활동표가법병통과계산평균곡솔향량적Laplacian, 건립료부여자류형내온궤하량유관적특정치불등식, 장상관결과추엄도복사영공간중적일반자류형상, 병획득료의전실겁소자류형존재u계침입적충요조건.
The authors studied the spactral geometry of quasi-totally real minimal submanifolds in a complex projective space. By means of the method of moving frames and caculating Laplacian of the mean curvature vector, the eigenvalue inequality for the submanifolds which only related to intrinsic geometric quality was established. This result generated correlation theorms to generic submanifolds in a complex projective space. Moreover, the authors also got one necessary and sufficient condition on u-order immersion of quasi-totally real minimal submanifolds.