南京师大学报(自然科学版)
南京師大學報(自然科學版)
남경사대학보(자연과학판)
JOURNAL OF NANJING NORMAL UNIVERSITY (NATURAL SCIENCE EDITION)
2009年
4期
1-6
,共6页
多重网格%mortar元%旋转Q_1元%非对称不定问题
多重網格%mortar元%鏇轉Q_1元%非對稱不定問題
다중망격%mortar원%선전Q_1원%비대칭불정문제
multigrid%mortar element%rotated Q_1 element%nonsymmetric and indefinite problems
讨论了mortar型旋转Q_1元求解非对称不定问题,给出了求解离散问题的多重网格算法,证明了多重网格方法的最优收敛性,即收敛速度与网格大小和层数无关.最后,数值结果验证了本文的理论分析.
討論瞭mortar型鏇轉Q_1元求解非對稱不定問題,給齣瞭求解離散問題的多重網格算法,證明瞭多重網格方法的最優收斂性,即收斂速度與網格大小和層數無關.最後,數值結果驗證瞭本文的理論分析.
토론료mortar형선전Q_1원구해비대칭불정문제,급출료구해리산문제적다중망격산법,증명료다중망격방법적최우수렴성,즉수렴속도여망격대소화층수무관.최후,수치결과험증료본문적이론분석.
A mortar-type rotated Q_1 element method is discussed for nonsymmetric and indefinite problems. A multigrid algorithm is proposed for the discrete systems which gives an optimal convergence factor, i.e., the convergence rate is independent of the mesh size and mesh level. Numerical results confirm our theoretical analysis.