原子核物理评论
原子覈物理評論
원자핵물리평론
Nuclear Physics Review
2001年
4期
225-231
,共7页
Gross-Pitaevskii方程%Φ映射拓扑流理论%分岔
Gross-Pitaevskii方程%Φ映射拓撲流理論%分岔
Gross-Pitaevskii방정%Φ영사탁복류이론%분차
利用推广Gross-Pitaevskii方程,分别研究了(2+1)维时空和3维空间的Bose-Ein stein凝聚体中涡旋的拓扑结构. 这一推广的方程能够被用于非均匀并且高度非线形的Bose-Einstein凝聚系统. 利用Φ映射拓扑流理论,给出了基于序参数的涡旋速度场,以及该速度场的拓扑结构. 最后,仔细地探讨了这两种Bose-Einstein系统中涡旋的各种分支条件.
利用推廣Gross-Pitaevskii方程,分彆研究瞭(2+1)維時空和3維空間的Bose-Ein stein凝聚體中渦鏇的拓撲結構. 這一推廣的方程能夠被用于非均勻併且高度非線形的Bose-Einstein凝聚繫統. 利用Φ映射拓撲流理論,給齣瞭基于序參數的渦鏇速度場,以及該速度場的拓撲結構. 最後,仔細地探討瞭這兩種Bose-Einstein繫統中渦鏇的各種分支條件.
이용추엄Gross-Pitaevskii방정,분별연구료(2+1)유시공화3유공간적Bose-Ein stein응취체중와선적탁복결구. 저일추엄적방정능구피용우비균균병차고도비선형적Bose-Einstein응취계통. 이용Φ영사탁복류이론,급출료기우서삼수적와선속도장,이급해속도장적탁복결구. 최후,자세지탐토료저량충Bose-Einstein계통중와선적각충분지조건.
We studied the topological structure of vortex in the
Bose-Einstein condensation with a generalized Gross-Pitaevskii
equation in (2+1)-dimensional space-time and 3-dimensional space,
respectively. Such equation can be used in discussing Bose-Einstein
condensates in heterogeneous and highly nonlinear systems. An
explicit expression for the vortex velocity field as a function of
the order parameter field is derived in terms of the Φ-mapping
theory,and the topological structure of the velocity field is
studied. At last,the branch conditions for generating,
annihilating,crossing,splitting and merging of vortex in two kinds
of Bose-Einstein systems are given.