应用数学和力学
應用數學和力學
응용수학화역학
APPLIED MATHEMATICS AND MECHANICS
2001年
3期
295-306
,共12页
两个自由度系统%多重尺度法%周期解%同宿轨道%混沌
兩箇自由度繫統%多重呎度法%週期解%同宿軌道%混沌
량개자유도계통%다중척도법%주기해%동숙궤도%혼돈
研究一类在参数和强迫激励下发生共振时的两个自由度系统,利用多重尺度法证明存在锁频于Ω的周期解。在一定条件下可变换成Wiggins的系统,给出了判断这类系统同宿轨道存在的计算公式
研究一類在參數和彊迫激勵下髮生共振時的兩箇自由度繫統,利用多重呎度法證明存在鎖頻于Ω的週期解。在一定條件下可變換成Wiggins的繫統,給齣瞭判斷這類繫統同宿軌道存在的計算公式
연구일류재삼수화강박격려하발생공진시적량개자유도계통,이용다중척도법증명존재쇄빈우Ω적주기해。재일정조건하가변환성Wiggins적계통,급출료판단저류계통동숙궤도존재적계산공식
A class of two-degree-of-freedom systems in resonance with an external, parametric excitation is investigated, the existence of the periodic solutions locked to Ω is proved by the use of the method of multiple scales. This systems can be transformed into the systems of Wiggins, under some conditions. A calculating formula which determines the exsitence of homoclinic orbits of the systems is given.