地球物理学报
地毬物理學報
지구물이학보
2001年
1期
120-128
,共9页
地震波传播%哈密顿体系%辛变换%辛几何算法%有限差分方法。
地震波傳播%哈密頓體繫%辛變換%辛幾何算法%有限差分方法。
지진파전파%합밀돈체계%신변환%신궤하산법%유한차분방법。
地震波传播过程本质上是能量在传播过程中逐步损耗直至殆尽的过程,而在实际应用中,常在无能量损耗假设下,用弹性波动方程或标量波动方程描述它.在哈密顿(Hamilton)体系表述下,地震波传播过程即为一个无限维的哈密顿系统随时间的演化过程.若不计能量损耗,波场演化过程实质上为一个单参数连续的辛变换,因而对应的数值算法应为辛几何算法.本文首先从地震波标量方程出发,给出哈密顿体系下地震波传播的表述,即任意两个时刻的波场是通过辛变换联系起来的.随后,把波场在时间和相空间离散化后,给出了用于波场计算的一些辛格式,如显式辛格式、隐式辛格式和蛙跳辛格式.并进一步讨论了有限差分格式和辛格式的异同.然后,应用显式辛格式和同阶的有限差分方法给出了同一理论速度模型下的波场和Marmousi速度模型下的单炮记录.数值结果表明,辛算法是一类可行的波场模拟的数值算法.在时间步长较小时,有限差分方法是辛算法的一个很好近似.文中的理论和方法,为地震波传播理论及实际应用研究提供了新的途径.
地震波傳播過程本質上是能量在傳播過程中逐步損耗直至殆儘的過程,而在實際應用中,常在無能量損耗假設下,用彈性波動方程或標量波動方程描述它.在哈密頓(Hamilton)體繫錶述下,地震波傳播過程即為一箇無限維的哈密頓繫統隨時間的縯化過程.若不計能量損耗,波場縯化過程實質上為一箇單參數連續的辛變換,因而對應的數值算法應為辛幾何算法.本文首先從地震波標量方程齣髮,給齣哈密頓體繫下地震波傳播的錶述,即任意兩箇時刻的波場是通過辛變換聯繫起來的.隨後,把波場在時間和相空間離散化後,給齣瞭用于波場計算的一些辛格式,如顯式辛格式、隱式辛格式和蛙跳辛格式.併進一步討論瞭有限差分格式和辛格式的異同.然後,應用顯式辛格式和同階的有限差分方法給齣瞭同一理論速度模型下的波場和Marmousi速度模型下的單砲記錄.數值結果錶明,辛算法是一類可行的波場模擬的數值算法.在時間步長較小時,有限差分方法是辛算法的一箇很好近似.文中的理論和方法,為地震波傳播理論及實際應用研究提供瞭新的途徑.
지진파전파과정본질상시능량재전파과정중축보손모직지태진적과정,이재실제응용중,상재무능량손모가설하,용탄성파동방정혹표량파동방정묘술타.재합밀돈(Hamilton)체계표술하,지진파전파과정즉위일개무한유적합밀돈계통수시간적연화과정.약불계능량손모,파장연화과정실질상위일개단삼수련속적신변환,인이대응적수치산법응위신궤하산법.본문수선종지진파표량방정출발,급출합밀돈체계하지진파전파적표술,즉임의량개시각적파장시통과신변환련계기래적.수후,파파장재시간화상공간리산화후,급출료용우파장계산적일사신격식,여현식신격식、은식신격식화와도신격식.병진일보토론료유한차분격식화신격식적이동.연후,응용현식신격식화동계적유한차분방법급출료동일이론속도모형하적파장화Marmousi속도모형하적단포기록.수치결과표명,신산법시일류가행적파장모의적수치산법.재시간보장교소시,유한차분방법시신산법적일개흔호근사.문중적이론화방법,위지진파전파이론급실제응용연구제공료신적도경.
Seismic wave propagation is a process of energy dissipation. Thisprocess is often described by elastic or scalar wave equation with the assumption of no dissipation. In the Hamiltonian fram, seismic wave propagation is evolution of the infinite dimensional Hamiltonian system. If without dissipation, the propagation is essentially a symplectic transformation with one parameter, and, consequently, the numerical calculation methods of the propagation ought to be symplectic, too. For simplicity, only the symplectic method based on scalar wave equation is given in this paper. A phase space is constructed by using wave field and its derivative the scalar wave equation as an evolution equation of a linearly Hamiltonian system has symplectic propertiy. After discreting the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. The scheme of Finite difference (FD) method and symplectic schemes are compared, and FD method is a good approximate symplectic method. A second order explicit symplectic sheme and FD method are applied in the same conditions to get a wave field in a synthetic model and a single shot record in Marmousi model. The result illustrates that the two method can give the same wave field as long as the time step is enough little. The theory and methods in this paper, gives a new way for the theoretic and applying study of wave propagation.