北京交通大学学报
北京交通大學學報
북경교통대학학보
JOURNAL OF NORTHERN JIAOTONG UNIVERSITY
2010年
2期
124-127,136
,共5页
王松%刘明光%石双双%杨罡
王鬆%劉明光%石雙雙%楊罡
왕송%류명광%석쌍쌍%양강
永磁同步电机%参数识别%扩展卡尔曼滤波%Elman%神经网络
永磁同步電機%參數識彆%擴展卡爾曼濾波%Elman%神經網絡
영자동보전궤%삼수식별%확전잡이만려파%Elman%신경망락
permanent magnet synchrouous metor(PMSM)%parameter identification%extended kalman filter(EKF)%elman neural network(Elman NN)
永磁同步电机(PMSM)是一种非线性、强耦合的控制对象,电机参数的变化加大了其控制难度.因此,参数辨识对于其闭环控制系统的稳定运行有着重大的意义.文中针对这一非线性、强耦合的模型,研究了一种基于扩展卡尔曼滤波(EKF)和Elman神经网络(Elman NN)的永磁同步电机参数R_s,ψ_d和ψ_q的辨识方法.仿真结果表明,该方法具有很快的收敛速度,能很精确地辨识PMSM的R_s,ψ_d和ψ_q,该网络具有良好的泛化能力,在变速变负载等复杂情况下也适用.
永磁同步電機(PMSM)是一種非線性、彊耦閤的控製對象,電機參數的變化加大瞭其控製難度.因此,參數辨識對于其閉環控製繫統的穩定運行有著重大的意義.文中針對這一非線性、彊耦閤的模型,研究瞭一種基于擴展卡爾曼濾波(EKF)和Elman神經網絡(Elman NN)的永磁同步電機參數R_s,ψ_d和ψ_q的辨識方法.倣真結果錶明,該方法具有很快的收斂速度,能很精確地辨識PMSM的R_s,ψ_d和ψ_q,該網絡具有良好的汎化能力,在變速變負載等複雜情況下也適用.
영자동보전궤(PMSM)시일충비선성、강우합적공제대상,전궤삼수적변화가대료기공제난도.인차,삼수변식대우기폐배공제계통적은정운행유착중대적의의.문중침대저일비선성、강우합적모형,연구료일충기우확전잡이만려파(EKF)화Elman신경망락(Elman NN)적영자동보전궤삼수R_s,ψ_d화ψ_q적변식방법.방진결과표명,해방법구유흔쾌적수렴속도,능흔정학지변식PMSM적R_s,ψ_d화ψ_q,해망락구유량호적범화능력,재변속변부재등복잡정황하야괄용.
Permanent magnet synchronous motor (PMSM) is a complex plant to control,due to its high nonlinearity and strong coupling. At the same time, the variation of motor parameters make this problem more serious. So, parameter identification of PMSM seems to be important for the two closed-loop vector control system.To solve this problem, a new method combining elman neural network(ENN) and modified extended kalman filter(EKF) is studied in this paper. The approach of identifying R_s,ψ_d and ψ_q is discussed.Simulation results show that it has lots of advantages such as high precision,fast convergence and excellent generalization ability and it is suitable for variable speed and load disturbance,even more complex circumstance.