浙江大学学报(理学版)
浙江大學學報(理學版)
절강대학학보(이학판)
JOURNAL OF ZHEJIANG UNIVERSITY
2011年
2期
131-134
,共4页
边界爆破%非线性梯度项%Karamata正规变化理论
邊界爆破%非線性梯度項%Karamata正規變化理論
변계폭파%비선성제도항%Karamata정규변화이론
Boundary blow-up%Nonlinear gradient terms%Karamata regular variation theory
应用Karamata正规变化理论和上下解方法,考虑了具有奇异边界条u|en=+∞的非线性椭圆方程△u±|▽u|q=6(x)f(u)边界爆破解的边界行为,其中f在无穷远处比任何幂函数up(P>1)都要变化得快,6(x)∈Cθ(Ω)(θ>0)在Ω非负.
應用Karamata正規變化理論和上下解方法,攷慮瞭具有奇異邊界條u|en=+∞的非線性橢圓方程△u±|▽u|q=6(x)f(u)邊界爆破解的邊界行為,其中f在無窮遠處比任何冪函數up(P>1)都要變化得快,6(x)∈Cθ(Ω)(θ>0)在Ω非負.
응용Karamata정규변화이론화상하해방법,고필료구유기이변계조u|en=+∞적비선성타원방정△u±|▽u|q=6(x)f(u)변계폭파해적변계행위,기중f재무궁원처비임하멱함수up(P>1)도요변화득쾌,6(x)∈Cθ(Ω)(θ>0)재Ω비부.
By Karamata regular variation theory and the method of lower and supper solution,the boundary behavior boundary condition u|en=+∞ is investigated,where f grows at infinite,faster than any power Up(P>1),b(x)∈C0(Ω)for some α>0,which is nonnogetive in Ω.