计算机研究与发展
計算機研究與髮展
계산궤연구여발전
JOURNAL OF COMPUTER RESEARCH AND DEVELOPMENT
2009年
12期
2143-2151
,共9页
徐学永%黄刘生%霍永凯%肖明军%徐宏力
徐學永%黃劉生%霍永凱%肖明軍%徐宏力
서학영%황류생%곽영개%초명군%서굉력
位置%更新%代理%追踪%无线传感器网络
位置%更新%代理%追蹤%無線傳感器網絡
위치%경신%대리%추종%무선전감기망락
location%updating%delegate%tracking%wireless sensor network
在传统的追踪系统中,移动节点需要周期性地向服务器汇报其位置信息.但是随着移动节点数目的增加,这种方式会导致很高的丢包率和快速的能量消耗.同时,在实际的追踪应用中,观察到节点之间距离通常很接近.因此,如果选出部分节点作为代理,由代理节点周期性地汇报位置信息能够极大地减少网络中的消息复杂度和能量消耗.基于此想法,提出了无线传感器网络追踪系统中的一种高效位置更新机制(LUM).在该机制中,移动节点只通过远程代理和近程代理这两种代理节点来更新位置信息.为验证该机制的性能,在真实的实验室环境中布置一个包含38个Micaz节点的原型系统.实验结果显示,与传统方法相比,LUM能够平均减少45%的消息发送和48%的能量消耗.
在傳統的追蹤繫統中,移動節點需要週期性地嚮服務器彙報其位置信息.但是隨著移動節點數目的增加,這種方式會導緻很高的丟包率和快速的能量消耗.同時,在實際的追蹤應用中,觀察到節點之間距離通常很接近.因此,如果選齣部分節點作為代理,由代理節點週期性地彙報位置信息能夠極大地減少網絡中的消息複雜度和能量消耗.基于此想法,提齣瞭無線傳感器網絡追蹤繫統中的一種高效位置更新機製(LUM).在該機製中,移動節點隻通過遠程代理和近程代理這兩種代理節點來更新位置信息.為驗證該機製的性能,在真實的實驗室環境中佈置一箇包含38箇Micaz節點的原型繫統.實驗結果顯示,與傳統方法相比,LUM能夠平均減少45%的消息髮送和48%的能量消耗.
재전통적추종계통중,이동절점수요주기성지향복무기회보기위치신식.단시수착이동절점수목적증가,저충방식회도치흔고적주포솔화쾌속적능량소모.동시,재실제적추종응용중,관찰도절점지간거리통상흔접근.인차,여과선출부분절점작위대리,유대리절점주기성지회보위치신식능구겁대지감소망락중적소식복잡도화능량소모.기우차상법,제출료무선전감기망락추종계통중적일충고효위치경신궤제(LUM).재해궤제중,이동절점지통과원정대리화근정대리저량충대리절점래경신위치신식.위험증해궤제적성능,재진실적실험실배경중포치일개포함38개Micaz절점적원형계통.실험결과현시,여전통방법상비,LUM능구평균감소45%적소식발송화48%적능량소모.
In traditional tracking systems, the mobiles report their location to server periodically, which will result in high packet loss rate and rapid energy depletion as the number of mobiles increase. Actually, in practical tracking applications, it is observed that nodes are often close to others. Hence, it is conceived to pick out some nodes to report periodically as delegates for their adjacent ones. By exploiting this thought, an effective location updating mechanism (LUM) is proposed for tracking systems in wireless sensor network. In this method, mobiles update location information through two kinds of delegates: remote and nearby delegates. Remote delegates are infrastructure nodes appointed by server. Nearby delegates are heads of clusters constructed according to the RSSI (received signal strength indicator) values. In LUM, only delegates report location periodically instead of each mobile node. Therefore, LUM can save energy greatly through reducing the message complexity. However, in practical environment, signal fluctuations will affect the process of LUM. In order to solve this problem, the parameterized flip-flop filter and strap thresholds methods are developed to smooth and stabilize the RSSI values respectively. To demonstrate the performance of LUM, a prototype system with 38 Micaz nodes are deployed. The results show that LUM outperforms traditional approaches by at least 45% less message transmission and 48% fewer energy depletion on average.