控制理论与应用
控製理論與應用
공제이론여응용
CONTROL THEORY & APPLICATIONS
2010年
2期
273-277
,共5页
离散粒子群优化%序列倒置算子%炼钢连铸组浇计划%旅行商问题
離散粒子群優化%序列倒置算子%煉鋼連鑄組澆計劃%旅行商問題
리산입자군우화%서렬도치산자%련강련주조요계화%여행상문제
discrete particle swarm optimization%inver over operator%steel making cast plan%traveling salesman problem
提出了浇次数未知的最优浇次计划模型.在分析该模型求解困难的基础上,提出了用伪旅行商表示该模型的方法.针对离散粒子群优化具有收敛速度、精度低,但能充分利用各粒子的局部最优值和全局最优值信息的特点,而序列倒置算子具有收敛速度和精度较高,但学习具有盲目性的特点,结合二者优点,提出了一种基于序列倒置的改进离散粒子群优化算法.实验研究表明,该算法与普通离散粒子群优化算法相比,不论是收敛速度和还是求解精度都有了较大提高.基于该改进算法求解最优浇次计划模型的研究表明:所提伪旅行商问题模型非常适合用于组浇模型描述.应用实际生产数据的计算表明该模型及其求解方法均非常有效
提齣瞭澆次數未知的最優澆次計劃模型.在分析該模型求解睏難的基礎上,提齣瞭用偽旅行商錶示該模型的方法.針對離散粒子群優化具有收斂速度、精度低,但能充分利用各粒子的跼部最優值和全跼最優值信息的特點,而序列倒置算子具有收斂速度和精度較高,但學習具有盲目性的特點,結閤二者優點,提齣瞭一種基于序列倒置的改進離散粒子群優化算法.實驗研究錶明,該算法與普通離散粒子群優化算法相比,不論是收斂速度和還是求解精度都有瞭較大提高.基于該改進算法求解最優澆次計劃模型的研究錶明:所提偽旅行商問題模型非常適閤用于組澆模型描述.應用實際生產數據的計算錶明該模型及其求解方法均非常有效
제출료요차수미지적최우요차계화모형.재분석해모형구해곤난적기출상,제출료용위여행상표시해모형적방법.침대리산입자군우화구유수렴속도、정도저,단능충분이용각입자적국부최우치화전국최우치신식적특점,이서렬도치산자구유수렴속도화정도교고,단학습구유맹목성적특점,결합이자우점,제출료일충기우서렬도치적개진리산입자군우화산법.실험연구표명,해산법여보통리산입자군우화산법상비,불론시수렴속도화환시구해정도도유료교대제고.기우해개진산법구해최우요차계화모형적연구표명:소제위여행상문제모형비상괄합용우조요모형묘술.응용실제생산수거적계산표명해모형급기구해방법균비상유효
An optimum furnace cast plan model with unknown cast number is presented. Based on the analysis of the difficulties in solving the problem, a pseudo traveling salesman problem(TSP) model is presented to describe the plan and scheduling model. Based on that the discrete particle swarm optimization(DPSO) can make the best of the particles' local and global optima, but it has the disadvantages of slow convergence and low search precision and the inver over operator is fast converged and high precise, but it is blindfold to learn from the other particles, a novel modified discrete particle swarm optimization algorithm based on the inver over operator(IDPSO) is presented. Experiments carried out on TSP show that IDPSO achieves good results comparing with the general DPSO. It can improve both the convergence speed and solution precision. IDPSO is used to solve the optimum cast plan problem. Simulations have been carried and the results show that the pseudo traveling salesman problem is very fit for describe the model. The computation with practical data shows that the model and the solving method are very effective.