农业工程学报
農業工程學報
농업공정학보
2010年
1期
145-149
,共5页
师彪%李郁侠%于新花%闫旺%孟欣%何常胜
師彪%李鬱俠%于新花%閆旺%孟訢%何常勝
사표%리욱협%우신화%염왕%맹흔%하상성
反向传播%神经网络%风力发电机组%人工鱼群优化算法%风轮节距控制器%桨叶节距角
反嚮傳播%神經網絡%風力髮電機組%人工魚群優化算法%風輪節距控製器%槳葉節距角
반향전파%신경망락%풍력발전궤조%인공어군우화산법%풍륜절거공제기%장협절거각
backpropagation%neural networks%wind turbines%artificial fish school optimization algorithms%clinopodium pitch controller%blade pitch angle
为了研制一种调节桨叶节距角的智能控制器,使风力发电机组在变化的风力中获得最大的能量并使转速、功率和机械负载变化最小,提出了一种基于弹性自适应人工鱼群-BP神经网络的风轮节距控制环并用于风轮节距角控制,分析了弹性自适应人工鱼群优化算法-BP神经网络,建立智能控制的风力发电机组模型.使用该方法模拟了在不同桨叶节距角下功率系数、叶尖速比、功率和电压变化,模拟值与实测值进行了对比.试验表明,模拟值与实测值比较接近,仿真效果较佳.结果表明该方法原理正确,符合实际调节及微机控制,可用于实时控制.
為瞭研製一種調節槳葉節距角的智能控製器,使風力髮電機組在變化的風力中穫得最大的能量併使轉速、功率和機械負載變化最小,提齣瞭一種基于彈性自適應人工魚群-BP神經網絡的風輪節距控製環併用于風輪節距角控製,分析瞭彈性自適應人工魚群優化算法-BP神經網絡,建立智能控製的風力髮電機組模型.使用該方法模擬瞭在不同槳葉節距角下功率繫數、葉尖速比、功率和電壓變化,模擬值與實測值進行瞭對比.試驗錶明,模擬值與實測值比較接近,倣真效果較佳.結果錶明該方法原理正確,符閤實際調節及微機控製,可用于實時控製.
위료연제일충조절장협절거각적지능공제기,사풍력발전궤조재변화적풍력중획득최대적능량병사전속、공솔화궤계부재변화최소,제출료일충기우탄성자괄응인공어군-BP신경망락적풍륜절거공제배병용우풍륜절거각공제,분석료탄성자괄응인공어군우화산법-BP신경망락,건립지능공제적풍력발전궤조모형.사용해방법모의료재불동장협절거각하공솔계수、협첨속비、공솔화전압변화,모의치여실측치진행료대비.시험표명,모의치여실측치비교접근,방진효과교가.결과표명해방법원리정학,부합실제조절급미궤공제,가용우실시공제.
For developing an intelligent controller for regulating blade pitch angle and wind turbine to reach the control objectives, which get maximum energy and achieve the smallest changes of rotational speed, power and mechanical load in change of wind, a technique of clinopodium pitch control loop based on resilient adaptive artificial fish school algorithm-backpropagation neural network was proposed to control clinopodium pitch angle, resilient adaptive artificial fish school optimization algorithm-backpropagation neural network was analyzed, and wind turbine model of intelligent control was established. Changes of power coefficients, tip speed ratio, power and voltage'were simulated under different pitch angles of blades by the method, and the simulated values were compared with the measured values. Experimental results indicated that the simulated values were very closed to the measured values, and the simulated values were better. This result shows that the principle of the method is correct, the wind turbine model of intelligent control is accordant to actual regulation and convenient for microcomputer control, controller can be used for real-time control.