广西植物
廣西植物
엄서식물
GUIHAIA
2008年
3期
395-401
,共7页
花色苷%存在状态%着色效应%花色苷体%花色苷液泡包涵体
花色苷%存在狀態%著色效應%花色苷體%花色苷液泡包涵體
화색감%존재상태%착색효응%화색감체%화색감액포포함체
anthocyanin%existent state%coloration effect%antbocyanoplast%anthocyaninic vacuolar inclusionCLC Number: Q946.83Document Cocle%A
综述了花色苷被摄入液泡的原因、花色苷在液泡中的存在状态及其对植物细胞的着色效应.花色苷在植物细胞质中合成后转运到液泡里是为了解除其对蛋白质和DNA等细胞功能分子的毒性.花色苷的液泡区隔化是花色苷在植物细胞中发挥正常功能的前提.在大多数植物中,花色苷在绝大多数情况下完全溶解在液泡里.但是,花色苷也能在液泡里形成颗粒,这些颗粒可以划分为花色苷体和花色苷液泡包涵体两类.花色苷体由膜包裹,其形成是液泡中小的有色囊泡逐渐合并的结果,发育完全的花色苷体为典型的球状、具比液泡更深的红色;液泡里的花色苷体具高密度,呈现为含高浓度花色苷的不溶性小球;花色苷体的存在可导致液泡的强烈色彩.花色苷液泡包涵体可能具备蛋白质基质,既无膜包裹又无内部结构,其形成是转运进液泡的花色苷与蛋白质基质结合的结果;液泡里的花色苷液泡包涵体形状不规则,象果冻;在花色苷液泡包涵体中,花色苷可能通过氢键连接于蛋白质基质的一个有限空间位点;花色苷液泡包涵体被认为是液泡中花色苷的"陷阱",优先摄取花色素3,5-二糖苷或酰化的花色苷;花色苷液泡包涵体的存在可增加液泡色彩的强度并导致"蓝化".
綜述瞭花色苷被攝入液泡的原因、花色苷在液泡中的存在狀態及其對植物細胞的著色效應.花色苷在植物細胞質中閤成後轉運到液泡裏是為瞭解除其對蛋白質和DNA等細胞功能分子的毒性.花色苷的液泡區隔化是花色苷在植物細胞中髮揮正常功能的前提.在大多數植物中,花色苷在絕大多數情況下完全溶解在液泡裏.但是,花色苷也能在液泡裏形成顆粒,這些顆粒可以劃分為花色苷體和花色苷液泡包涵體兩類.花色苷體由膜包裹,其形成是液泡中小的有色囊泡逐漸閤併的結果,髮育完全的花色苷體為典型的毬狀、具比液泡更深的紅色;液泡裏的花色苷體具高密度,呈現為含高濃度花色苷的不溶性小毬;花色苷體的存在可導緻液泡的彊烈色綵.花色苷液泡包涵體可能具備蛋白質基質,既無膜包裹又無內部結構,其形成是轉運進液泡的花色苷與蛋白質基質結閤的結果;液泡裏的花色苷液泡包涵體形狀不規則,象果凍;在花色苷液泡包涵體中,花色苷可能通過氫鍵連接于蛋白質基質的一箇有限空間位點;花色苷液泡包涵體被認為是液泡中花色苷的"陷阱",優先攝取花色素3,5-二糖苷或酰化的花色苷;花色苷液泡包涵體的存在可增加液泡色綵的彊度併導緻"藍化".
종술료화색감피섭입액포적원인、화색감재액포중적존재상태급기대식물세포적착색효응.화색감재식물세포질중합성후전운도액포리시위료해제기대단백질화DNA등세포공능분자적독성.화색감적액포구격화시화색감재식물세포중발휘정상공능적전제.재대다수식물중,화색감재절대다수정황하완전용해재액포리.단시,화색감야능재액포리형성과립,저사과립가이화분위화색감체화화색감액포포함체량류.화색감체유막포과,기형성시액포중소적유색낭포축점합병적결과,발육완전적화색감체위전형적구상、구비액포경심적홍색;액포리적화색감체구고밀도,정현위함고농도화색감적불용성소구;화색감체적존재가도치액포적강렬색채.화색감액포포함체가능구비단백질기질,기무막포과우무내부결구,기형성시전운진액포적화색감여단백질기질결합적결과;액포리적화색감액포포함체형상불규칙,상과동;재화색감액포포함체중,화색감가능통과경건련접우단백질기질적일개유한공간위점;화색감액포포함체피인위시액포중화색감적"함정",우선섭취화색소3,5-이당감혹선화적화색감;화색감액포포함체적존재가증가액포색채적강도병도치"람화".
This review sums up the reasons of anthocyanins being sequestered into vacuole,the existent states of an-tbocyanins in vacuole and the corresponding coloration effects of anthocyanins on plant cells. Transporting of antho-cyanins from the biosynthesis site, namely the cytoplasm of plant cell, into vacuole is to detoxify the toxicity of antho-cyanins on the functional molecules of the cell, such as proteins and DNAs. The vacuolar compartmentalization of an-thocyanins is the prerequisite for anthocyanin function normally in plant cells. In a wide range of plant species and inmost cases,anthocyanins dissolve completely in vacuole. However, in vacuoles, anthocyanins can also form granuleswhich can be classified into two categories, namely anthocyanoplast (ACP) and anthocyaninic vacuolar inclusion(AVI). ACP is membrane-bounded, its formation is the result of the progressive coalescence of the smaller pigmentedvesicles in vacuole and fully developed ACP is typically spherical and more deeply red-colored than the vacuole. Invacuole, ACP is high density and insoluble globule highly concentrated with anthocyanins. The emergence of ACP canprovide intense coloration in the vacuole. AVI may be protein matrix and it possesses neither a membrane boundarynor an internal structure,its formation is the result of the antbocyanins transported into the vacuole bind with a pro-tein matrix. In vacuole, AVI is irregular and jelly-like in shape. In AVIs, the attachment of anthocyanins to the ma-trix protein is likely to be via H-bonds to a sterically restricted site. AVI is suggested to act as vacuolar anthocyanin"trap", preferentially for anthocyanidin 3,5-diglycosides or acylated anthocyanins. The emergence of AVI can en-hance color intensity and results in the "blueness" of color in the vacuole.