化工新型材料
化工新型材料
화공신형재료
NEW CHEMICAL MATERIALS
2009年
11期
68-70,110
,共4页
王继鹏%丁玲红%苏朝辉%张盈%张伟风
王繼鵬%丁玲紅%囌朝輝%張盈%張偉風
왕계붕%정령홍%소조휘%장영%장위풍
SnO_2%中空球%锂离子电池%电化学
SnO_2%中空毬%鋰離子電池%電化學
SnO_2%중공구%리리자전지%전화학
SnO_2%hollow sphere%lithium-ion battery%electrochemistry
用碳球做模板,SnCl_4·5H_2O和尿素为前驱体制备了二氧化锡(SnO_2)中空球.X射线衍射(XRD)、扫描电镜(SEM)和高分辨透射电镜(HRTEM)结果表明:制备出来的SnO_2中空球为四方相结构,其直径和壁厚分别约为250nm和40nm.恒电流充放电测试结果显示:在电流密度为160mAh·g~(-1)(0.20时,该SnO_2中空球的首次放电容量为1720mAh·g~(-1),第15周期放电容量保持到615mAh·g~(-1);从第4周期开始,库仑效率均保持在90%以上.电流密度为320mAh·g~1(0.4C)时,第15周期放电容量保持到588mAh·g~(-1).以上结果表明,这种材料具有较高的储锂容量和较好的可逆性能,是一种有前景的锂离子电池负极材料.
用碳毬做模闆,SnCl_4·5H_2O和尿素為前驅體製備瞭二氧化錫(SnO_2)中空毬.X射線衍射(XRD)、掃描電鏡(SEM)和高分辨透射電鏡(HRTEM)結果錶明:製備齣來的SnO_2中空毬為四方相結構,其直徑和壁厚分彆約為250nm和40nm.恆電流充放電測試結果顯示:在電流密度為160mAh·g~(-1)(0.20時,該SnO_2中空毬的首次放電容量為1720mAh·g~(-1),第15週期放電容量保持到615mAh·g~(-1);從第4週期開始,庫崙效率均保持在90%以上.電流密度為320mAh·g~1(0.4C)時,第15週期放電容量保持到588mAh·g~(-1).以上結果錶明,這種材料具有較高的儲鋰容量和較好的可逆性能,是一種有前景的鋰離子電池負極材料.
용탄구주모판,SnCl_4·5H_2O화뇨소위전구체제비료이양화석(SnO_2)중공구.X사선연사(XRD)、소묘전경(SEM)화고분변투사전경(HRTEM)결과표명:제비출래적SnO_2중공구위사방상결구,기직경화벽후분별약위250nm화40nm.항전류충방전측시결과현시:재전류밀도위160mAh·g~(-1)(0.20시,해SnO_2중공구적수차방전용량위1720mAh·g~(-1),제15주기방전용량보지도615mAh·g~(-1);종제4주기개시,고륜효솔균보지재90%이상.전류밀도위320mAh·g~1(0.4C)시,제15주기방전용량보지도588mAh·g~(-1).이상결과표명,저충재료구유교고적저리용량화교호적가역성능,시일충유전경적리리자전지부겁재료.
SnO_2 hollow spheres were prepared using carbon spheres as template, SnCl_4 · 5H_2O and urea as precur-sors. Investigations of X-ray Diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission e-lectron microscopy (HRTEM) indicated that the products were SnO_2 hollow spheres with tetragonal structure; the average diameter and shell thickness were about 250 nm and 40 nm, respectively. The electrochemical properties of the SnO_2 hol-low spheres were investigated by galvanostatic cycling. The discharge capacity in the 1 st cycle was 1720mAh·g~(-1) at a current density of 160mA·g~(-1) (0. 2C) and the discharge capacity at 15st cycle was 615mAh·g~(-1), the coulombic efficien-cy were above 90% from the 4th cycle, which indicated that the SnO_2 hollow spheres had a higher high-lithium storage ca-pacity and excellent reversibility. The discharging capacity was about 588 mAh·g~(-1) at 15st cycle at a current density of 320mA· g~(-1) (0. 4C), demonstrating a good high-rate performance. Additionally, the easy of preparation and cheap price also made this method very promising in lithium-ion batteries.