光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2010年
4期
984-987
,共4页
翁欣欣%张中湖%尹利辉%陆峰
翁訢訢%張中湖%尹利輝%陸峰
옹흔흔%장중호%윤리휘%륙봉
便携式拉曼光谱仪%降糖药片%核主成分分析%聚类分析
便攜式拉曼光譜儀%降糖藥片%覈主成分分析%聚類分析
편휴식랍만광보의%강당약편%핵주성분분석%취류분석
Handheld Raman spectrometer%Hypoglycemic tablets%Kernel principal component%Clustering analysis
对不同种类的降糖药片进行拉曼光谱的核主成分分析(KPCA)-聚类分析,实现快速、简便的鉴别.KPCA可以有效地避免主成分分析(PCA)只能处理线性问题和降维效果不明显的弊端.它通过一个非线性变换,首先将原变量空间映射到高维特征空间,然后在这个高维特征空间中进行线性主成分分析.采集得到的药片拉曼光谱的KPCA-聚类分析结果表明,采用KPCA提取特征变量的聚类结果比采用PCA提取特征变量后进行聚类分析的效果好,并且未经刮除表面包膜的降糖药片识别准确率为96.5%,经过刮除表面包膜处理的降糖药片的识别准确率为100%.便携式拉曼光谱仪结合该方法以其检测速度快、准确率高、使用简便、无样品前处理等显著优势,为药品的快速检验技术提供一种新的有效的鉴别手段.
對不同種類的降糖藥片進行拉曼光譜的覈主成分分析(KPCA)-聚類分析,實現快速、簡便的鑒彆.KPCA可以有效地避免主成分分析(PCA)隻能處理線性問題和降維效果不明顯的弊耑.它通過一箇非線性變換,首先將原變量空間映射到高維特徵空間,然後在這箇高維特徵空間中進行線性主成分分析.採集得到的藥片拉曼光譜的KPCA-聚類分析結果錶明,採用KPCA提取特徵變量的聚類結果比採用PCA提取特徵變量後進行聚類分析的效果好,併且未經颳除錶麵包膜的降糖藥片識彆準確率為96.5%,經過颳除錶麵包膜處理的降糖藥片的識彆準確率為100%.便攜式拉曼光譜儀結閤該方法以其檢測速度快、準確率高、使用簡便、無樣品前處理等顯著優勢,為藥品的快速檢驗技術提供一種新的有效的鑒彆手段.
대불동충류적강당약편진행랍만광보적핵주성분분석(KPCA)-취류분석,실현쾌속、간편적감별.KPCA가이유효지피면주성분분석(PCA)지능처리선성문제화강유효과불명현적폐단.타통과일개비선성변환,수선장원변량공간영사도고유특정공간,연후재저개고유특정공간중진행선성주성분분석.채집득도적약편랍만광보적KPCA-취류분석결과표명,채용KPCA제취특정변량적취류결과비채용PCA제취특정변량후진행취류분석적효과호,병차미경괄제표면포막적강당약편식별준학솔위96.5%,경과괄제표면포막처리적강당약편적식별준학솔위100%.편휴식랍만광보의결합해방법이기검측속도쾌、준학솔고、사용간편、무양품전처리등현저우세,위약품적쾌속검험기술제공일충신적유효적감별수단.
In the present paper, five different kinds of hypoglycemic tablets were identified using kernel principal component analysis (KPCA)-clustering analysis of their Raman spectra. KPCA was used to compress thousands of spectral data into several variables and to describe the body of the spectra before clustering analysis was chosen as further research method. The results showed that hypoglycemic tablets could be quickly classified using KPCA-clustering analysis. A disadvantage of Raman spectros-copy for this type of analysis is that it is primarily a surface technique. As a consequence, the spectra of the tablet core and its coating might differ. However, the KPCA-clustering analysis turned out to be a sufficiently reliable discrimination, i. e., 96% of the hypoglycemic tablets with coating and 100% of the hypoglycemic tablets without coating were predicted correctly. Over-all, the Raman spectroscopic method in the present paper plays a good role in the identification and offers a new approach to the rapid discrimination of different kinds of hypoglycemic tablets.