应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2010年
4期
731-737
,共7页
分裂迭代法%收敛性%对称不定方程组%预条件矩阵
分裂迭代法%收斂性%對稱不定方程組%預條件矩陣
분렬질대법%수렴성%대칭불정방정조%예조건구진
Splitting iterative method%Convergence%Symmetric indefinite systems%Preconditioned matrix
本文研究求解系数矩阵为2×2块对称不定矩阵时的线性方程组,提出了一种新的分裂迭代法,并通过研究迭代矩阵的谱半径,详细讨论了新方法的收敛性.最后,我们也讨论了预条件矩阵特征根的几条性质.
本文研究求解繫數矩陣為2×2塊對稱不定矩陣時的線性方程組,提齣瞭一種新的分裂迭代法,併通過研究迭代矩陣的譜半徑,詳細討論瞭新方法的收斂性.最後,我們也討論瞭預條件矩陣特徵根的幾條性質.
본문연구구해계수구진위2×2괴대칭불정구진시적선성방정조,제출료일충신적분렬질대법,병통과연구질대구진적보반경,상세토론료신방법적수렴성.최후,아문야토론료예조건구진특정근적궤조성질.
In this paper,we present a new splitting iterative method for two-by-two block symmet-ric indefinite systems. The spectral radius of the iteration matrix for the new method is discussed in detail,the convergence theories of the splitting iterative method for augmented systems are ob-tained. Finally,we discuss the eigenvalues of preconditioned matrix.