数学的实践与认识
數學的實踐與認識
수학적실천여인식
MATHEMATICS IN PRACTICE AND THEORY
2009年
23期
176-181
,共6页
出生率%传染病模型%平衡点%全局稳定性
齣生率%傳染病模型%平衡點%全跼穩定性
출생솔%전염병모형%평형점%전국은정성
birth rate%epidemic model%equilibrium%global stability
将一般出生率系数引入SIS传染病模型,得到了种群灭绝和疾病灭绝的阈值条件.分别借助stokes定理和Dulac函数对染病者的数量模型和染病者在种群中所占比例的模型进行了讨论,得到了相应模型的全局动力学行为.
將一般齣生率繫數引入SIS傳染病模型,得到瞭種群滅絕和疾病滅絕的閾值條件.分彆藉助stokes定理和Dulac函數對染病者的數量模型和染病者在種群中所佔比例的模型進行瞭討論,得到瞭相應模型的全跼動力學行為.
장일반출생솔계수인입SIS전염병모형,득도료충군멸절화질병멸절적역치조건.분별차조stokes정리화Dulac함수대염병자적수량모형화염병자재충군중소점비례적모형진행료토론,득도료상응모형적전국동역학행위.
The generalized birth rate is introduced into an SIS epidemic model, the threshold conditions on the extinction of population and infection all were found for this model. The models with the number of the infected individuals and the fraction of the infected individuals in population were investigated by Stokes theorem and Dulac function, respectively, and the global dynamic behaviors of the corresponding models were obtained.