电工技术学报
電工技術學報
전공기술학보
TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY
2009年
11期
184-191
,共8页
容差模拟电路%故障诊断%随机算法%灵敏度分析%免疫遗传算法%神经网络
容差模擬電路%故障診斷%隨機算法%靈敏度分析%免疫遺傳算法%神經網絡
용차모의전로%고장진단%수궤산법%령민도분석%면역유전산법%신경망락
Analog circuit with tolerance%fault diagnosis%RAs%sensitivity analysis%IGAs%neural network
为了提高诊断容差模拟电路软故障的速度与准确性,提出了一种随机算法、灵敏度分析、免疫遗传算法与神经网络相结合的软故障诊断方法.该法首先利用基于随机算法的灵敏度分析来解决电路发生软故障时测试节点与激励信号频率选择困难的问题,然后对待测电路施加所选的激励并在所选择的测试节点处提取节点电压,这些电压值再经主元分析与归一化处理作为故障特征,输入神经网络.为了解决传统BP算法本身固有的易陷入局部最优等缺点,引入免疫遗传算法来进行优化,形成基于免疫遗传算法的BP神经网络,进行故障分类.本文详述了其诊断原理及诊断步骤,并通过电路诊断实例,验证了所提方法的有效性.
為瞭提高診斷容差模擬電路軟故障的速度與準確性,提齣瞭一種隨機算法、靈敏度分析、免疫遺傳算法與神經網絡相結閤的軟故障診斷方法.該法首先利用基于隨機算法的靈敏度分析來解決電路髮生軟故障時測試節點與激勵信號頻率選擇睏難的問題,然後對待測電路施加所選的激勵併在所選擇的測試節點處提取節點電壓,這些電壓值再經主元分析與歸一化處理作為故障特徵,輸入神經網絡.為瞭解決傳統BP算法本身固有的易陷入跼部最優等缺點,引入免疫遺傳算法來進行優化,形成基于免疫遺傳算法的BP神經網絡,進行故障分類.本文詳述瞭其診斷原理及診斷步驟,併通過電路診斷實例,驗證瞭所提方法的有效性.
위료제고진단용차모의전로연고장적속도여준학성,제출료일충수궤산법、령민도분석、면역유전산법여신경망락상결합적연고장진단방법.해법수선이용기우수궤산법적령민도분석래해결전로발생연고장시측시절점여격려신호빈솔선택곤난적문제,연후대대측전로시가소선적격려병재소선택적측시절점처제취절점전압,저사전압치재경주원분석여귀일화처리작위고장특정,수입신경망락.위료해결전통BP산법본신고유적역함입국부최우등결점,인입면역유전산법래진행우화,형성기우면역유전산법적BP신경망락,진행고장분류.본문상술료기진단원리급진단보취,병통과전로진단실례,험증료소제방법적유효성.
In order to increase the speed and improve the accuracy of soft fault diagnosis in tolerance analog circuits, a new soft fault diagnosis approach, which is based on Randomized algorithms (RAs), sensitivity analysis, immune genetic algorithms (IGAs) and neural networks, is proposed. First, the proposed RAs based sensitivity analysis method allows for removing the difficulties in the selections of input stimuli frequencies and the most suitable test nodes for faulty circuits. Then, the system uses the selected stimuli to excite the circuit, samples its outputs and preprocesses them by principal component analysis (PCA) and normalization to generate optimal features for training the neural network. In order to overcome the shortcomings that back propagation (BP) algorithms suffer from the problem of getting stuck at local minima, the IGAs are introduced to optimize the BP neural networks (BPNNs) and IGA-BPNNs based fault diagnosis system is formed. The diagnosis principles and steps are described. Finally, the reliability of the method is shown by a practical example.